Advertisement

Folia Microbiologica

, Volume 50, Issue 6, pp 487–493 | Cite as

A rapid screening method for detecting active compounds against erythromycin-resistant bacterial strains of Finnish origin

  • K. Kreander
  • P. Vuorela
  • P. Tammela
Article

Abstract

A rapid and simple microdilution technique on 96-well microplate based on turbidimetry was optimized and validated for screening of antimicrobial activity against erythromycin-resistant bacterial strains ofStreptococcus pyogenes andStaphylococcus simulans isolated from Finnish patients. UsingS. pyogenes ATCC 12351 as reference strain the developed method was evaluated by reproducibility measurements and using parameters typically employed for screening methods,i.e. signal-to-background, signal-to-noise and a screening-window coefficient, the Z’ factor. The method was further used for screening a group of natural compounds and their synthetic derivatives against resistant bacterial strains. Of these, octyl and dodecyl gallates, and usnic and ursolic acids were the most active. The described method is a rapid, homogeneous, cost-effective and easy-to-perform system for screening of new potential antimicrobial agents in drug discovery.

Keywords

Ursolic Acid Baicalin Usnic Acid Acacetin Bergenin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

CFU

colony-forming units

S/B

signal-to-background

S/N

signal-to-noise

Z′

screening-window coefficient

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bollini S., Herbst J.J., Gaughan G.T., Verdoorn T.A., Ditta J., Dubowchik G.M., Vinitsky A.: High-throughput fluorescence polarization method for identification of FKBP12 ligands.J.Biomol.Screen.7, 526–530 (2002).PubMedCrossRefGoogle Scholar
  2. Brnaková Z., Farkašovska J., Godany A.: The use of bacteriophages in eliminating polyresistant strains ofStaphylococcus aureus andStreptococcus agalactiae.Folia Microbiol.50, 187–194 (2005).CrossRefGoogle Scholar
  3. Bronson D., Hentz N., Janzen W.P., Lister M.D., Menke K., Wegrzyn J., Sittampalam G.S.: Basic considerations in designing high-throughput screening assays, pp. 5–30 in R. Seethala, P.B. Fernandes (Eds):Handbook of Drug Screening. Marcel Dekker Inc., New York 2001.Google Scholar
  4. Carson C.F., Hammer K.A., Riley T.V.: Broth microdilution method for determining the susceptibility ofEscherichia coli andStaphylococcus aureus to the essential oil ofMelaleuca alternifolia (tea tree oil).Microbios82, 181–185 (1995).PubMedGoogle Scholar
  5. Chand S., Lusunzi I., Veal D.A., Williams L.R., Karuso P.: Rapid screening of the antimicrobial activity of extracts and natural products.J.Antibiot.47, 1295–1304 (1994).PubMedGoogle Scholar
  6. Clancy J., Peitpas J., Dib-Hajj F., Yuan W., Cronan M., Kamath A.V., Bergeron J., Retsema J.A.: Molecular cloning and functional analysis of a novel macrolide-resistance determinant,mefA, fromStreptococcus pyogenes.Mol.Microbiol.22, 867–879 (1996).PubMedCrossRefGoogle Scholar
  7. Eloff J.N.: A sensitive and quick microplate method to determine the minimal inhibitory concentration of plant extracts for bacteria.Planta Med.64, 711–713 (1998).PubMedCrossRefGoogle Scholar
  8. Francolini I., Norris P., Piozzi A., Donelli G., Stoodley P.: Usnic acid, a natural antimicrobial agent able to inhibit bacterial biofilm formation on polymer surfaces.Antimicrob.Agents Chemother.48, 4360–4365 (2004).PubMedCrossRefGoogle Scholar
  9. Fyhrquist P., Mwasumbi L., Hæggström C.A., Vuorela H., Hiltunen R., Vuorela P.: Ethnobotanical and antimicrobial investigation on some species ofTerminalia andCombretum (Combretaceae) growing in Tanzania.J.Ethnopharmacol.79, 169–177 (2002).PubMedCrossRefGoogle Scholar
  10. Hernández A., Marin M.: New turbidimetric method for estimating bacterial growth in heterogeneous media.Proc.Biochem.37, 1125–1128 (2002).CrossRefGoogle Scholar
  11. Hotomi M., Billal D.S., Shimada J., Yamauchi K., Fujihara K., Yamanaka N.: Current status of antimicrobial susceptibility of clinical isolates ofStreptococcus pyogenes in Japan: report of a countrywide surveillance study.J.Infect.Chemother.11, 48–51 (2005).PubMedCrossRefGoogle Scholar
  12. ##Ipngólfsdóttir K.: Usnic acid.Phytochemistry 61, 729–736 (2002).CrossRefGoogle Scholar
  13. Leclerq R., Courvalin P.: Bacterial resistance to macrolide, lincosamine, and streptogramin antibiotics by target site modification.Antimicrob.Agents Chemother.35, 1267–1272 (1991a).Google Scholar
  14. Leclerq R., Courvalin P.: Intrinsic and unusual resistance to macrolide, lincosamide, and streptogramin antibiotics in bacteria.Antimicrob.Agents Chemother.35, 1273–1276 (1991b).Google Scholar
  15. Kubo I., Xiao P., Fujita K.: Anti-MRSA activity of alkyl gallates.Bioorg.Med.Chem.Lett.12, 113–116 (2002).PubMedCrossRefGoogle Scholar
  16. Mallavadhani U.V., Mahapatra A., Jamil K., Reddy P.S.: Antimicrobial activity of some pentacyclic triterpenes and their synthesized 3-O-lipophilic chains.Biol.Pharm.Bull.10, 1576–1579 (2004).CrossRefGoogle Scholar
  17. Ojala T., Remes S., Haansuu P., Vuorela H., Hiltunen R., Haahtela K., Vuorela P.: Antimicrobial activity of some coumarin containing herbal plants growing in Finland.J.Ethnopharmacol.73, 299–305 (2000).PubMedCrossRefGoogle Scholar
  18. Rauha J.P., Remes S., Heinonen M., Hopia A., Kähkonen M., Kujala T., Pihlaja K., Vuorela H., Vuorela P.: Antimicrobial effects of Finnish plant extracts containing flavonoids and other phenolic compounds.Internat.J.Food Microbiol.56, 3–12 (2000).CrossRefGoogle Scholar
  19. Ringbom T., Segura L., Noreen Y., Perera P., Bohlin L.: Ursolic acid fromPlantago major, a selective inhibitor of cyclooxygenase-2 catalyzed prostaglandin biosynthesis.J.Nat.Prod.61, 1212–1215 (1998).PubMedCrossRefGoogle Scholar
  20. Seppälä H., Nissinen A., Yu Q., Huovinen P.: Three different phenotypes of erythromycin-resistantStreptococcus pyogenes in Finland.J.Antimicrob.Chemother.32, 885–891 (1993).PubMedCrossRefGoogle Scholar
  21. Seppälä H., Skurnik M., Soini H., Roberts M.C., Huovinen P.: A novel erythromycin resistance methyltransferase gene (ermTR) inStreptococcus pyogenes.Antimicrob.Agents Chemother.42, 257–262 (1998).PubMedCrossRefGoogle Scholar
  22. Skyttä E., Mattila-Sandholm T.: A quantitave method for assessing bacteriocins and other food antimicrobials by automated turbidometry.J.Microbiol.Meth.14, 77–88 (1991).CrossRefGoogle Scholar
  23. Streit J.M., Fritsche T.R., Sader H.S., Jones R.N.: Worldwide assessment of dalbavancin activity and spectrum against over 6000 clinical isolates.Diagn.Microbiol.Infect.Dis.48, 137–143 (2004).PubMedCrossRefGoogle Scholar
  24. Tally F.P.: Researchers reveal ways to defeat ‘superbugs’.Drug Discov.Today4, 395–398 (1999).PubMedCrossRefGoogle Scholar
  25. Weisblum B.: Erythromycin resistance by ribosome modification.Antimicrob.Agents Chemother.39, 577–585 (1995).PubMedGoogle Scholar
  26. Zhang J.H., Chung T.D., Oldenburg K.R.: A simple statistical parameter for use in evaluation and validation of high throughput screening assays.J.Biomol.Screen.4, 67–73 (1999).PubMedCrossRefGoogle Scholar

Copyright information

© Institute of Microbiology, Academy of Sciences of the Czech Republic 2005

Authors and Affiliations

  • K. Kreander
    • 1
  • P. Vuorela
    • 1
    • 2
  • P. Tammela
    • 1
    • 3
  1. 1.Drug Discovery and Development Technology Center, Faculty of PharmacyUniversity of HelsinkiHelsinkiFinland
  2. 2.Department of Biochemistry and PharmacyÅbo Akademi UniversityTurkuFinland
  3. 3.Division of Pharmaceutical Biology, Faculty of PharmacyUniversity of HelsinkiHelsinkiFinland

Personalised recommendations