Folia Microbiologica

, 48:496 | Cite as

Cross-resistance to strobilurin fungicides in mitochondrial and nuclear mutants ofSaccharomyces cerevisiae

  • M. Hnátová
  • Y. Gbelská
  • M. Obernauerová
  • V. Šubíková
  • J. Šubík
Article

Abstract

In yeast the resistance to kresoxim-methyl and azoxystrobin, like the resistance to strobilurin A (mucidin) is under the control of both mitochondrialcob gene and the PDR network of nuclear genes involved in multidrug resistance. The mucidin-resistantmucl (G137R) andmuc2 (L275S) mutants ofSaccharomyces cerevisiae containing point mutations in mtDNA were found to be cross-resistant to kresoximmethyl and azoxystrobin. Cross-resistance to all three strobilurin fungicides was also observed in yeast transformants containing gain-of-function mutations in the nuclearPDR3 gene. On the other hand, nuclear mutants containing disrupted chromosomal copies of thePDR1 andPDR3 genes or thePDR5 gene alone werehypersensitive to kresoxim-methyl, axoxystrobin and strobilurin A. The frequencies of spontaneous mutants selected for resistance either to kresoxim-methyl, azoxystrobin or strobilurin A were similar and resulted from mutations both in mitochondrial and nuclear genes. The results indicate that resistance to strobilurin fungicides, differing in chemical structure and specific activity, can be caused by the same molecular mechanism involving changes in the structure of apocytochromeb and/or increased efflux of strobilurins from fungal cells.

References

  1. Balzi E., Wang M., Leterme S., Van Dyck L., Goffeau A.:PDR5, a novel yeast multidrug resistance conferring transporter controlled by the transcription regulatorPDR1.J.Biol.Chem. 269, 2206–2214 (1994).PubMedGoogle Scholar
  2. Barlett D.W., Clough J.M., Goldwin J.R., Hall A.A., Hamer M., Parr-Dobrzanski B.: The strobilurin fungicides.Pest.Manag.Sci. 58, 649–662 (2002).CrossRefGoogle Scholar
  3. Becker W.E., von Jagow G., Anke T., Steglich W.: Oudemansin, strobilurin A, strobilurin B and myxothiazol: new inhibitors of thebcl segment of the respiratory chain with anE-β-methoxyacrylate system as common structural element.FEBS Lett. 132, 329–333 (1981).PubMedCrossRefGoogle Scholar
  4. Bissinger P.H., Kuchler K.: Molecular cloning and expression of theS. cerevisiae STS1 gene product.J.Biol.Chem. 264, 4180–4186 (1994).Google Scholar
  5. Chin K.M., Chavaillaz D., Kaesbohrer M., Staub T., Felsenstein F.G.: Characterizing resistance risk ofErysiphe graminis f.sp.tritici to strobilurins.Crop Protect. 20, 87–96 (2001).CrossRefGoogle Scholar
  6. Clough J.M., Godfrey C.R.A.: The strobilurin fungicides, pp. 109–148 in D.H. Hutson, J. Miyamoto (Eds):Fungicidal Activity. Wiley, Chichester (UK) 1998.Google Scholar
  7. Delaveau T., Delahodde A., Carvajal E., Šubík J., Jacq C.:PDR3, a new yeast regulatory gene, is homologous toPDR1 and controls the multidrug resistance phenomenon.Mol.Gen.Genet. 178, 603–610 (1994).Google Scholar
  8. De Risi J., van den Hazel B., Marc P., Balzi E., Brown P., Jacq C., Goffeau A.: Genome microarray analysis of transcriptional activation in multidrug resistance yeast mutants.FEBS Lett. 410, 156–160 (2000).CrossRefGoogle Scholar
  9. Di Rago J.P., Coppee J.Y., Colson A.M.: Molecular basis for resistance to myxothiazol, mucidin (strobilurin A) and stigmatellin. Cytochromeb inhibitors activity at the center of the mitochondrial ubiquinol-cytochrome-c reductase inSaccharomyces cerevisiae.J.Biol.Chem. 264, 14543–14548 (1989).PubMedGoogle Scholar
  10. Espinel-Ingroff A., Barchiesi F., Hazen K.C., Martinez-Suarez J.V., Scalise G.: Standardization of antifungal susceptibility testing and clinical relevance.Med.Mycol. 36, 68–78 (1998).PubMedGoogle Scholar
  11. Gisi U., Chin K.M., Knapova G., Kung Farberr R., Mohr U., Parisi S., Sierotzki H., Steinfeld U.: Recent developments in elucidated modes of resistance to phenylamide, DMI and strobilurin fungicides.Crop Protect. 19, 863–872 (2000).CrossRefGoogle Scholar
  12. Michalková-Papajová D., Obernauerová M., Šubík J.: Role of the PDR gene network in yeast susceptibility to the antifungal antibiotic mucidin.Antimicrob.Agents Chemother. 44, 418–420 (2000).PubMedCrossRefGoogle Scholar
  13. Morschhauser J.: The genetic basis of fluconazole resistance development inCandida albicans.Biochim.Biophys.Acta 1578, 240–248 (2002).Google Scholar
  14. Nourani A., Papajová D., Delahodde A., Jacq C., Šubik J.: Clustered amino acid substitutions in the yeast transcription regulator Pdr3 increase pleiotropic drug resistance and identify a new central regulatory domain.Mol.Gen.Genet. 256, 397–405 (1997).PubMedCrossRefGoogle Scholar
  15. Sanglard D., Kuchler K., Ischer F., Pagani J.L., Monod M., Bille J.: Mechanisms of resistance to azole antifungal agents inCandida albicans isolates from AIDS patients involve specific multidrug transporters.Antimicrob.Agents Chemother. 39, 2378–2386 (1995).PubMedGoogle Scholar
  16. Sanglard D., Ischer F., Monod M., Bille J.. Cloning ofCandida albicans genes conferring resistance to azole antifungal agents — characterization ofCDR2, a new multidrug ABC transporter gene.Microbiology 143, 405–416 (1997).PubMedCrossRefGoogle Scholar
  17. Sanglard D., Odds F.C.: Resistance ofCandida species to antifungal agents: molecular mechanisms and clinical consequences.Lancet Infect.Dis. 2, 73–85 (2002).PubMedCrossRefGoogle Scholar
  18. Sauter H., Steglich W., Anke T.: Strobilurins: evolution of a new class of active substances.Angew.Chem.Internat.Ed. 117, 1328–1349 (1999).Google Scholar
  19. Šubík J., Behúň M., Musílek V.: Antibiotic mucidin, a new antimycin A-like inhibitor of electron transport in rat liver mitochondria.Biochem.Biophys.Res.Commun. 57, 17–22 (1974).PubMedCrossRefGoogle Scholar
  20. Šubík J., Kováčová V., Takácsová G.: Mucidin resistance in yeast. Isolation, characterization and genetic analysis of nuclear and mitochondrial mucidin-resistant mutants ofSaccharomyces cerevisiae.Eur.J.Biochem. 73, 275–286 (1977).PubMedCrossRefGoogle Scholar
  21. Šubík J., Takácsová G.: Genetic determination of ubiquinol-cytochrome-c reductase. Mitochondrial locusmuc3 specifying resistance ofSaccharomyces cerevisiae to mucidin.Mol.Gen.Genet. 161, 99–108 (1978).PubMedCrossRefGoogle Scholar
  22. Šubík J., Ulaszewski S., Goffeau A.: Genetic mapping of nuclear mucidin resistance mutations inSaccharomyces cerevisiae. A newpdr locus on chromosome II.Curr.Genet. 10, 665–670 (1986).PubMedCrossRefGoogle Scholar
  23. Takácsová G., Šubík J., Kotylak Z.: Localization of mucidin-resistant locusmuc3 on mitochondrial DNA with respect to ubiquinolcytochrome-c reductase deficientbox loci. Locusmuc3 is allelic tobox2.Mol.Gen.Genet. 179, 141–146 (1980).PubMedCrossRefGoogle Scholar
  24. Thompson J.R., Register E., Curotto J., Kurtz M., Kelly R.: An improved protocol for the preparation of yeast cells for transformation by electroporation.Yeast 14, 565–571 (1998).PubMedCrossRefGoogle Scholar

Copyright information

© Institute of Microbiology, Academy of Sciences of the Czech Republic 2003

Authors and Affiliations

  • M. Hnátová
    • 1
  • Y. Gbelská
    • 1
  • M. Obernauerová
    • 1
  • V. Šubíková
    • 1
  • J. Šubík
    • 1
  1. 1.Department of Microbiology and Virology, Faculty of ScienceComenius UniversityBratislavaSlovakia

Personalised recommendations