Folia Microbiologica

, Volume 52, Issue 3, pp 297–312 | Cite as

Candidiasis — Do we need to fight or to tolerate theCandida fungus?

Article

Abstract

Candidiases, infections caused by germination forms of theCandida fungus, represent a heterogeneous group of diseases from systemic infection, through mucocutaneous form, to vulvovaginal form. Although caused by one organism, each form is controlled by distinct host immune mechanisms. Phagocytosis by polymorphonuclears and macrophages is generally accepted as the host immune mechanism forCandida elimination. Phagocytes require proinflammatory cytokine stimulation which could be harmful and must be regulated during the course of infection by the activity of CD8+ and CD4+ T cells. In the vaginal tissue the phagocytes are inefficient and inflammation is generally an unwanted reaction because it could damage mucosal tissue and break the tolerance to common vagina antigens including the otherwise saprophytingCandida yeast. Recurrent form of vulvovaginal candidiasis is probably associated with breaking of such tolerance. Beside the phagocytosis, specific antibodies, complement, and mucosal epithelial cell compriseCandida eliminating immune mechanisms. They are regulated by CD4+ and CD8+ T cells which produce cytokines IL-12, IFN-γ, IL-10, TGF-β,etc. as the response to signals from dendritic cells specialized to sense actualCandida morphotypes. During the course ofCandida infection proinflammatory signals (if initially necessary) are replaced successively by antiinflammatory signals. This balance is absolutely distinct during each candidiasis form and it is crucial to describe and understand the basic principles before designing new therapeutic and/or preventive approaches.

Abbreviations

C3, C4

components of the complement cascade

CMC

chronic mucocutaneous candidiasis

CpG ODN

oligodeoxynucleotide-containing nonmethylated cytosine-phosphate-guanosine motifs

CR, CR3

receptors for components of the complement cascade

DC

dendritic cell

Fab

antigen-binding domain of Ig

FcγR

receptors for constant domain of Ig

GM-CSF

granulocyte-macrophage colony-stimulating factor

H-2k, H-2d

mouse MHC phenotypes

HIV

human immunodeficiency virus

Hsp90

heat-shock protein 81 kDa

Ig

immunoglobulin

IL

interleukin

IFN-γ

interferon γ

KT

killer toxin ofPichia anomala

MAP kinase

mitogen-activated protein kinase

MBL

mannan-binding lectin

MHC

major histocompatibility complex

MR

mannose receptor

OEC

oral epithelial cell

OPC

oropharyngeal candidiasis

PAMP

pathogen-associated molecular pattern

PMN

polymorphonuclear

PRR

pattern-recognition receptor

RVVC

recurrent vulvovaginal candidiasis

SAP

secreted aspartyl proteinase

SCID

severe combined immune deficiency

TABM

T-cell-derived antigen-binding molecule

TGF-β

transforming growth factor β

TH1, TH2

helper T cell subsets

TLR

Toll-like receptor

Treg

regulatory T cells

VEC

vaginal epithelial cell

VVC

vulvovaginal candidiasis

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ashman R.B., Fulurija A., Papadimitriou J.M.: Both CD4+ and CD8+ lymphocytes reduce the severity of tissue lesions in murine systemic cadidiasis, and CD4+ cells also demonstrate strain-specific immunopathological effects.Microbiology145, 1631–1640 (1999).PubMedGoogle Scholar
  2. Ashman R.B., Papadimitriou J.M., Fulurija A., Drysdale K.E., Farah C.S., Naidoo O., Gotjamanos T.: Role of complement C5 and T lymphocytes in pathogenesis of disseminated and mucosal candidiasis in susceptible DBA/2 mice.Microb.Pathog.34, 103–113 (2003).PubMedCrossRefGoogle Scholar
  3. Barousse M.M., Steele C., Dunlap K., Espinosa T., Boikov D., Sobel J.D., Fidel P.L. Jr.: Growth inhibition ofCandida albicans by human vaginal epithelial cells.J.Infect.Dis.184, 1489–1493 (2001).PubMedCrossRefGoogle Scholar
  4. Barousse M.M., Van Der Pol B.J., Fortenberry D., Orr D., Fidel P.L. Jr.: Vaginal yeast colonization, prevalence of vaginitis, and associated local immunity in adolescents.Sex.Transm.Infect.80, 48–53 (2004).PubMedCrossRefGoogle Scholar
  5. Bellocchio S., Montagnoli C., Bozza S., Gaziano R., Rossi G., Mambula S.S., Vecchi A., Mantovani A., Levitz S.M., Romani L.: The contribution of the Toll-like/IL-1 receptor superfamily to innate and adaptive immunity to fungal pathogensin vivo.J.Immunol.172, 3059–3069 (2004).PubMedGoogle Scholar
  6. Beninati C., Oggioni M.R., Boccanera M., Spinosa M.R., Maggi T., Conti S., Magliani W., De Bernardis F., Teti G., Cassone A., Pozzi G., Polonelli L.: Therapy of mucosal candidiasis by expression of an anti-idiotype in human commensal bacteria.Nature Biotechnol.18, 1060–1064 (2000).CrossRefGoogle Scholar
  7. Bialková A., Šubík J.: Biology of the pathogenic yeastCandida glabrata.Folia Microbiol.51, 3–20 (2006).CrossRefGoogle Scholar
  8. Black C.A., Rohan L.C., Cost M., Watkins S.C., Draviam R., Alber S., Edwards R.P.: Vaginal mucosa serves as an inductive site for tolerance.J.Immunol.165, 5077–5083 (2000).PubMedGoogle Scholar
  9. Calderone R.A., Fonzi W.A.: Virulence factors ofCandida albicans.Trends Microbiol.9, 327–335 (2001).PubMedCrossRefGoogle Scholar
  10. de Carvalho R.J., Cunha C.M., Silva D.A., Sopelete M.C., Urzedo J.E., Moreira T.A., Moraes Pde S., Taketomi E.A.: IgA, IgE and IgG subclasses toCandida albicans in serum and vaginal fluid from patients with vulvovaginal candidiasis.Rev.Assoc.Med.Brasil49, 434–438 (2003).Google Scholar
  11. Cassone A., Palma C., Djeu J.Y., Aiuti F., Quinti I.: Anti-Candida activity and interleukin-1β and interleukin-6 production by polymorphonuclear leukocytes are preserved in subjects with AIDS.J.Clin.Microbiol.31, 1354–1357 (1993).PubMedGoogle Scholar
  12. Cassone A., De Bernardis F., Torososantucci A.: An outline of the role of anti-Candida antibodies within the context of passive immunization and protection from candidiasis.Curr.Mol.Med.5, 377–382 (2005).PubMedCrossRefGoogle Scholar
  13. Cenci E., Romani L., Mencacci A., Spaccapelo R., Schiaffella E., Puccetti P., Bistoni F.: Interleukin-4 and interleukin-10 inhibit nitric oxide-dependent macrophage killing ofCandida albicans.Eur.J.Immunol.23, 1034–1038 (1993).PubMedCrossRefGoogle Scholar
  14. Chen Y., Kuchroo V.K., Inobe J., Hafler D.A., Weiner H.L.: Regulatory T cell clones induced by oral tolerance: suppression of autoimmune encephalomyelitis.Science265, 1237–1240 (1994).PubMedCrossRefGoogle Scholar
  15. Claudia M., Bacci A., Silvia B., Gaziano R., Spreca A., Romani L.: The interaction of fungi with dendritic cells: implications for TH immunity and vaccination.Curr.Mol.Med.2, 507–524 (2002).PubMedCrossRefGoogle Scholar
  16. Cutler J.E.: Acute systemic candidiasis in normal and congenitally thymic-deficient (nude) mice.J.Reticuloendothel.Soc.19, 121–124 (1976).PubMedGoogle Scholar
  17. Cutler J.E.: Defining criteria for anti-mannan antibodies to protect against candidiasis.Curr.Mol.Med.5, 383–392 (2005).PubMedCrossRefGoogle Scholar
  18. De Bernardis F., Boccanera M., Adriani D., Spreghini E., Santoni G., Cassone A.: Protective role of antimannan and antiaspartyl proteinase antibodies in an experimental model ofCandida albicans vaginitis in rats.Infect.Immun.65, 3399–3405 (1997).PubMedGoogle Scholar
  19. De Bernardis F., Boccanera M., Adriani D., Girolamo A., Cassone A.: Intravaginal and intranasal immunizations are equally effective in inducing vaginal antibodies and conferring protection against vaginal candidiasis.Infect.Immun.70, 2725–2729 (2002).PubMedCrossRefGoogle Scholar
  20. Deepe G.S. Jr.: Prospects for the development of fungal vaccines.Clin.Microbiol.Rev.10, 585–596 (1997).PubMedGoogle Scholar
  21. Djeu J.Y., Serbousek D., Blanchard D.K.: Release of tumor necrosis factor by human polymorphonuclear leukocytes.Blood76, 1405–1409 (1990).PubMedGoogle Scholar
  22. Dongari-Bagtzoglou A., Fidel P.L. Jr.: The host cytokine responses and protective immunity in oropharyngeal candidiasis.J.Dent.Res.84, 966–977 (2005).PubMedGoogle Scholar
  23. Dorko E., Pilipčinec E., Tkáčiková L’.: Fungal diseases of the respiratory tract.Folia Microbiol.47, 302–304 (2002a).CrossRefGoogle Scholar
  24. Dorko E., Pilipčinec E., Tkáčiková L’.:Candida urinary tract infections caused by non-albicans Candida species.Folia Microbiol.47, 182–184 (2002b).CrossRefGoogle Scholar
  25. Dorko E., Pilipčinec E., Tkáčiková L’.:Candida species isolated from cerebrospinal fluid.Folia Microbiol.47, 179–181 (2002c).CrossRefGoogle Scholar
  26. Dorko E., Baranová Z., Jenča A., Kizek P., Pilipčinec E., Tkáčiková L’.: Diabetes mellitus and candidiases.Folia Microbiol.50, 255–262 (2005).CrossRefGoogle Scholar
  27. Elahi S., Pang G., Clancy R., Ashman R.B.: Cellular and cytokine correlates of mucosal protection in murine model of oral candidiasis.Infect.Immun.68, 5771–5777 (2000).PubMedCrossRefGoogle Scholar
  28. Farah C.S., Elahi S., Drysdale K., Pang G., Gotjamanos T., Seymour G.J., Clancy R.L., Ashman R.B.: Primary role for CD4+ T lymphocytes in recovery from oropharyngeal candidiasis.Infect.Immun.70, 724–731 (2002).PubMedCrossRefGoogle Scholar
  29. Fidel P.L. Jr.: Distinct protective host defenses against oral and vaginal candidiasis.Med.Mycol.40, 359–375 (2002a).PubMedCrossRefGoogle Scholar
  30. Fidel P.L. Jr.: Immunity toCandida.Oral.Dis.8 (Suppl. 2), 69–75 (2002b).PubMedCrossRefGoogle Scholar
  31. Fidel P.L. Jr.: Immunity in vaginal candidiasis.Curr.Opin.Infect.Dis.18, 107–111 (2005).PubMedCrossRefGoogle Scholar
  32. Fidel P.L. Jr.,Sobel J.D.: Protective immunity in experimentalCandida vaginitis.Res.Immunol.149, 361–373 (1998).PubMedCrossRefGoogle Scholar
  33. Fidel P.L. Jr.,Lynch M.E., Sobel J.D.: Circulating CD4 and CD8 T cells have little impact on host defense against experimental vaginal candidiasis.Infect.Immun.63, 2403–2408 (1995).PubMedGoogle Scholar
  34. Fidel P.L. Jr.,Wolf N.A., KuKuruga M.A.: T lymphocytes in the murine vaginal mucosa are phenotypically distinct from those in the periphery.Infect.Immun.64, 3793–3799 (1996).PubMedGoogle Scholar
  35. Fidel P.L. Jr.,Wormley F.L. Jr.,Chaiban J., Chesson R.R., Lounev V.: Analysis of the CD4 protein on human vaginal T lymphocytes.Am.J.Reprod.Immunol.45, 200–204 (2001).PubMedCrossRefGoogle Scholar
  36. Fidel P.L. Jr.,Barousse M., Espinosa T., Ficarra M., Sturtevant J., Martin D.H., Quayle A.J., Dunlap K.: An intravaginal liveCandida challenge in humans leads to new hypotheses for the immunopathogenesis of vulvovaginal candidiasis.Infect.Immun.72, 2939–2946 (2004).PubMedCrossRefGoogle Scholar
  37. Friedman A., Weiner H.L.: Induction of anergy or active suppression following oral tolerance is determined by antigen dosage.Proc.Nat.Acad.Sci.USA91, 6688–6692 (1994).PubMedCrossRefGoogle Scholar
  38. Fulurija A., Ashman R.B., Papadimitriou J.M.: Increased tissue resistance in the nude mouse againstCandida albicans without altering strain-dependent differences in susceptibility.J.Med.Vet.Mycol.35, 197–203 (1997).PubMedCrossRefGoogle Scholar
  39. Gudlaugsson O., Gillespie S., Lee K., Vande Berg J., Hu J., Messer S., Herwaldt L., Pfaller M., Diekema D.: Attributable mortality of nosocomial candidemia, revisited.Clin.Infect.Dis.37, 1172–1177 (2003).PubMedCrossRefGoogle Scholar
  40. Han Y., Cutler J.E.: Antibody response that protects against disseminated candidiasis.Infect.Immun.63, 2714–2719 (1995).PubMedGoogle Scholar
  41. Han Y., Morrison R.P., Cutler J.E.: A vaccine and monoclonal antibodies that enhance mouse resistance toCandida albicans vaginal infection.Infect.Immun.66, 5771–5776 (1998).PubMedGoogle Scholar
  42. Jílek P., Špaček J., Buchta V., Kučera Z., Drahošová M., Förstl M., Andrýs C.: Systemic immunity in patients with recurrent vulvovaginal candidiasis.Česká Gynekol.70, 453–454 (2005).PubMedGoogle Scholar
  43. Johansen F.E., Brandtzaeg P.: Transcriptional regulation of the mucosal IgA system.Trends Immunol25, 150–157 (2004).PubMedCrossRefGoogle Scholar
  44. Kalkanci A., Tuncer C., Degertekin B., Eren A., Kustimur S., Ilhan M.N., Dursun A.: Detection ofCandida albicans by culture, serology and PCR in clinical specimens from patients with ulcerative colitis: re-evaluation of an old hypothesis with a new perspective.Folia Microbiol.50, 263–268 (2005a).CrossRefGoogle Scholar
  45. Kalkanci A., Bozdayi G., Biri A., Kustimur S.: Distribution of secreted aspartyl proteinases using a polymerase chain reaction assay withSAP specific primers inCandida albicans isolates.Folia Microbiol.50, 409–414 (2005b).CrossRefGoogle Scholar
  46. Kaposzta R., Marodi L., Hollinshead M., Gordon S., da Silva R.P.: Rapid recruitment of late endosomes and lysosomes in mouse macrophages ingestingCandida albicans.J.Cell.Sci.112, 3237–3248 (1999).PubMedGoogle Scholar
  47. Kirkpatrick C.H.: Chronic mucocutaneous candidiasis.Pediatr.Infect.Dis.J.20, 197–206 (2001).PubMedCrossRefGoogle Scholar
  48. Kozel T.R., Weinhold L.C., Lupan D.M.: Distinct characteristics of initiation of the classical and alternative complement pathways byCandida albicans.Infect.Immun.64, 3360–3368 (1996).PubMedGoogle Scholar
  49. Leigh J.E., Barousse M., Swoboda R.K., Myers T., Hager S., Wolf N.A., Cutright J.L., Thompson J., Sobel J.D., Fidel P.L. Jr.:Candida-specific systemic cell-mediated immune reactivities in human immunodeficiency virus-positive persons with mucosal candidiasis.J.Infect.Dis.183, 277–285 (2001).PubMedCrossRefGoogle Scholar
  50. Little C.H., Georgiou G.M., Marceglia A., Ogedgebe H., Cone R.E., Mazza D.: Measurement of T-cell-derived antigen binding molecules and immunoglobulin G specific toCandida albicans mannan in sera of patients with recurrent vulvovaginal candidiasis.Infect.Immun.68, 3840–3847 (2000).PubMedCrossRefGoogle Scholar
  51. Magliani W., Conti S., Arseni S., Salati A., Ravanetti L., Maffei D.L., Giovati L., Polonelli L.: Antibody-mediated protective immunity in fungal infections.New Microbiol.28, 299–309 (2005a).PubMedGoogle Scholar
  52. Magliani W., Conti S., Frazzi R., Ravanetti L., Maffei D.L., Polonelli L.: Protective antifungal yeast killer toxin-like antibodies.Curr.Mol.Med.5, 443–452 (2005b).PubMedCrossRefGoogle Scholar
  53. Matthews R.C., Burnie J.P.: Recombinant antibodies: a natural partner in combinatorial antifungal therapy.Vaccine22, 865–871 (2004).PubMedCrossRefGoogle Scholar
  54. Matthews R.C., Burnie J.P.: Human recombinant antibody to Hsp90: a natural partner in combination therapy.Curr.Mol.Med.5, 403–411 (2005).PubMedCrossRefGoogle Scholar
  55. Miyake T., Takeya K., Nomoto K., Muraoka S.: Cellular elements in the resistance toCandida infection in mice — I. Contribution of T lymphocytes and phagocytes at various stages of infection.Microbiol.Immunol.21, 703–725 (1977).PubMedGoogle Scholar
  56. Mizutani S., Endo M., Ino-Ue T., Kurasawa M., Uno Y., Saito H., Onogi K., Kato I., Takesako K.: CD4(+)-T-Cell-mediated resistance to systemic murine candidiasis induced by a membrane fraction ofCandida albicans.Antimicrob.Agents Chemother.44, 2653–2658 (2000).PubMedCrossRefGoogle Scholar
  57. Morgan J., Meltzer M.I., Plikaytis B.D., Sofair A.N., Huie-White S., Wilcox S., Harrison L.H., Seaberg E.C., Hajjeh R.A., Teutsch S.M.: Excess mortality, hospital stay, and cost due to candidemia: a case-control study using data from population-based candidemia surveillance.Infect.Control.Hosp.Epidemiol.26, 540–547 (2005).PubMedCrossRefGoogle Scholar
  58. Nomanbhoy F., Steele C., Yano J., Fidel P.L. Jr.: Vaginal and oral epithelial cell anti-Candida activity.Infect.Immun.70, 7081–7088 (2002).PubMedCrossRefGoogle Scholar
  59. Omaetxebarria M.J., Moragues M.D., Elguezabal N., Rodriguez-Alejandre A., Brena S., Schneider J., Polonelli L., Ponton J.: Antifungal and antitumor activities of a monoclonal antibody directed against a stress mannoprotein ofCandida albicans.Curr.Mol.Med.5, 393–401 (2005).PubMedCrossRefGoogle Scholar
  60. Pachl J., Svoboda P., Jacobs F., Vandewoude K., Van der Hoven B., Spronk P., Masterson G., Malbrain M., Aoun M., Garbino J., Takala J., Drgona L., Burnie J., Matthews R.: A randomized, blinded, multicenter trial of lipid-associated amphotericin B aloneversus in combination with an antibody-based inhibitor of heat shock protein 90 in patients with invasive candidiasis.Clin.Infect.Dis.42, 1404–1413 (2006).PubMedCrossRefGoogle Scholar
  61. Palma C., Serbousek D., Torosantucci A., Cassone A., Djeu J.Y.: Identification of a mannoprotein fraction fromCandida albicans that enhances human polymorphonuclear leukocyte (PMNL) functions and stimulates lactoferrin in PMNL inhibition ofCandidal growth.J.Infect.Dis.166, 1103–1112 (1992).PubMedGoogle Scholar
  62. Pappas P.G., Rex J.H., Lee J., Hamill R.J., Larsen R.A., Powderly W., Kauffman C.A., Hyslop N., Mangino J.E., Chapman S., Horowitz H.W., Edwards J.E., Dismukes W.E.: A prospective observational study of candidemia: epidemiology, therapy, and influences on mortality in hospitalized adult and pediatric patients.Clin.Infect.Dis.37, 634–643 (2003).PubMedCrossRefGoogle Scholar
  63. Polonelli L., Archibusacci C., Sestito M., Morace G.: Killer system: a simple method for differentiatingCandida albicans strains.J.Clin.Microbiol.17, 774–780 (1983).PubMedGoogle Scholar
  64. Polonelli L., Lorenzini R., De Bernardis F., Morace G.: Potential therapeutic effect of yeast killer toxin.Mycopathologia96, 103–107 (1986).PubMedCrossRefGoogle Scholar
  65. Powrie F., Correa-Oliveira R., Mauze S., Coffman R.L.: Regulatory interactions between CD45RBhigh and CD45RBlow CD4+ T cells are important for the balance between protective and pathogenic cell-mediated immunity.J.Exp.Med.179, 589–600 (1994).PubMedCrossRefGoogle Scholar
  66. Raška M., Weigl E.: Heat shock proteins in autoimmune diseases.Biomed.Pap.Med.Fac.Univ.Palacký Olomouc Czech Rep.149, 243–249 (2005).Google Scholar
  67. Raška M., Běláková J., Wudattu N.K., Kafková L., Růžičková K., Šebestová M., Kolář Z., Weigl E.: Comparison of protective effect of protein and DNA vaccines Hsp90 in murine model of systemic candidiasis.Folia Microbiol.50, 77–82. (2005).CrossRefGoogle Scholar
  68. Rogers T., Balish E.: ExperimentalCandida albicans infection in conventional mice and germfree rats.Infect.Immun.14, 33–38 (1976).PubMedGoogle Scholar
  69. Romani L., Puccetti P., Mencacci A., Cenci E., Spaccapelo R., Tonnetti L., Grohmann U., Bistoni F.: Neutralization of IL-10 up-regulates nitric oxide production and protects susceptible mice from challenge withCandida albicans.J.Immunol.152, 3514–3521 (1994).PubMedGoogle Scholar
  70. Romani L., Mencacci A., Cenci E., Spaccapelo R., Toniatti C., Puccetti P., Bistoni F., Poli V.: Impaired neutrophil response and CD4+ T helper cell 1 development in interleukin 6-deficient mice infected withCandida albicans.J.Exp.Med.183, 1345–1355 (1996a).PubMedCrossRefGoogle Scholar
  71. Romani L., Puccetti P., Bistoni F.: Biological role of TH cell subsets in candidiasis.Chem.Immunol.63, 115–137 (1996b).PubMedCrossRefGoogle Scholar
  72. Romani L., Bistoni F., Puccetti P.: Fungi, dendritic cells and receptors: a host perspective of fungal virulence.Trends Microbiol.10, 508–514 (2002).PubMedCrossRefGoogle Scholar
  73. Santoni G., Boccanera M., Adriani D., Lucciarini R., Amantini C., Morrone S., Cassone A., De Bernardis F.: Immune cell-mediated protection against vaginal candidiasis: evidence for a major role of vaginal CD4(+) T cells and possible participation of other local lymphocyte effectors.Infect.Immun.70, 4791–4797 (2002).PubMedCrossRefGoogle Scholar
  74. Segal E.:Candida, still number one — what do we know and where are we going from there?Mycoses48 (Suppl. 1), 3–11 (2005).PubMedCrossRefGoogle Scholar
  75. Shoham S., Levitz S.M.: The immune response to fungal infections.Brit.J.Haematol.129, 569–582 (2005).CrossRefGoogle Scholar
  76. Steele C., Leigh J., Swoboda R., Fidel P.L. Jr.: Growth inhibition ofCandida by human oral epithelial cells.J.Infect.Dist.182, 1479–1485 (2000).CrossRefGoogle Scholar
  77. Swoboda R.K., Bertram G., Budge S., Gooday G.W., Gow N.A., Brown A.J.: Structure and regulation of theHSP90 gene from the pathogenic fungusCandida albicans.Infect.Immun.63, 4506–4514 (1995).PubMedGoogle Scholar
  78. Takeda K., Kaisho T., Akira S.: Toll-like receptors.Ann.Rev.Immunol.21, 335–376 (2003).CrossRefGoogle Scholar
  79. Tardif F., Goulet J.P., Zakrazewski A., Chauvin P., Rouabhia M.: Involvement of interleukin-18 in the inflammatory response against oropharyngeal candidiasis.Med.Sci.Monit.10, BR239-BR249 (2004).PubMedGoogle Scholar
  80. Taylor B.N., Saavedra M., Fidel P.L. Jr.: Local TH1/TH2 cytokine production during experimental vaginal candidiasis: potential importance of transforming growth factor β.Med.Mycol.38, 419–431 (2000).PubMedCrossRefGoogle Scholar
  81. Torosantucci A., Bromuro C., Chiani P., De Bernardis F., Berti F., Galli C., Norelli F., Bellucci C., Polonelli L., Costantino P., Rappuoli R., Cassone A.: A novel glyco-conjugate vaccine against fungal pathogens.J.Exp.Med.202, 597–606 (2005).PubMedCrossRefGoogle Scholar
  82. Tuite A., Elias M., Picard S., Mullick A., Gros P.: Genetic control of susceptibility toCandida albicans in susceptible A/J and resistant C57BL/6J mice.Genes Immun.6, 672–682 (2005).PubMedGoogle Scholar
  83. Weigl E., Kopeček P., Raška M., Hradilová S.: Heat shock proteins in immune reactions.Folia Microbiol.44, 561–566 (1999).CrossRefGoogle Scholar
  84. Wormley F.L. Jr.,Chaiban J., Fidel P.L. Jr.: Cell adhesion molecule and lymphocyte activation marker expression during experimental vaginal candidiasis.Infect.Immun.69, 5072–5079 (2001a).PubMedCrossRefGoogle Scholar
  85. Wormley F.L. Jr.,Steele C., Wozniak K., Fujihashi K., McGhee J.R., Fidel P.L. Jr.: Resistance of T-cell receptor δ-chain-deficient mice to experimentalCandida albicans vaginitis.Infect.Immun.69, 7162–7164 (2001b).PubMedCrossRefGoogle Scholar
  86. Wozniak K.L., Wormley F.L. Jr.,Fidel P.L. Jr.:Candida-specific antibodies during experimental vaginal candidiasis in mice.Infect.Immun.70, 5790–5799 (2002).PubMedCrossRefGoogle Scholar
  87. Zaoutis T.E., Argon J., Chu J., Berlin J.A., Walsh T.J., Feudtner C.: The epidemiology and attributable outcomes of candidemia in adults and children hospitalized in the United States: a propensity analysis.Clin.Infect.Dis.41, 1232–1239 (2005).PubMedCrossRefGoogle Scholar

Copyright information

© Institute of Microbiology, Academy of Sciences of the Czech Republic 2007

Authors and Affiliations

  • M. Raška
    • 1
  • J. Běláková
    • 1
  • M. Křupka
    • 1
  • E. Weigl
    • 1
  1. 1.Department of Immunology, Medical FacultyPalacký UniversityOlomoucCzechia

Personalised recommendations