Folia Microbiologica

, Volume 50, Issue 1, pp 71–76 | Cite as

Possible role of procathepsin D in human cancer

  • A. Vashishta
  • M. Fusek
  • V. Větvička


For the past ten years, our research has been focused on elucidating the mechanism by which procathepsin D (pCD) impacts cancer development. Various studies have shown that pCD is overexpressed and secreted by numerous cancer cell lines. After secretion, it exhibits “growth hormone-like” activity on cancerous cells but the exact mechanism of this mitogenic activity is not yet understood. The activation peptide of pCD (APpCD) (which is cleaved off upon activation of the zymogen) is responsible for the mitogenic function of pCD. Variousin vitro andin vivo studies support our theory that the APpCD interacts with both parent and neighborhood cancer cells and thus functions as an autocrine mitogen. We propose a model of pCD mitogenic function and also some possible approaches for treatment and prevention of certain types of cancer.


Breast Cancer Breast Cancer Cell Human Breast Cancer Cell Line Activation Peptide Mitogenic Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



cathepsin D


procathepsin D


mannose 6-phosphate


activation peptide of pCD


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bazzett L.B., Watkins C.S., Gercel-Taylor C., Taylor D.D.: Modulation of proliferation and chemosensitivity by procathepsin D and its peptides in ovarian cancer.Gynecol.Oncol. 74, 181–187 (1999).PubMedCrossRefGoogle Scholar
  2. Beneš P., Koelsch G., Dvořák B., Fusek M., Větvička V.: Detection of procathepsin D in rat milk.Comp.Biochem.Physiol. B 133, 113–118 (2002).PubMedCrossRefGoogle Scholar
  3. Brouillet J.P., Dufour F., Lemamy G., Garcia M., Schlup N., Grenier J., Mani J.C., Rochefort H.: Increased cathepsin D level in the serum of patients with metastatic breast carcinoma detected with a specific pro-cathepsin D immunoassay.Cancer 79, 2132–2136 (1997).PubMedCrossRefGoogle Scholar
  4. Cavailles V., Augreau P., Rochefort H.: Cathepsin D gene is controlled by a mixed promoter, and estrogens stimulate only TATA-dependent transcription in breast cancer cells.Proc.Nat.Acad.Sci.USA 90, 203–207 (1993).PubMedCrossRefGoogle Scholar
  5. Chambon M., Rebillard X., Rochefort H., Brouillet J.P., Baldet P., Guiter J., Maudelonde T.: Cathepsin D cytosolic assay and immunohistochemical quantification in human prostate tumors.Prostate 24, 320–325 (1994).PubMedCrossRefGoogle Scholar
  6. Chinni S.R., Gercel-Taylor C., Conner G.E., Taylor D.D.: Cathepsin D antigenic epitopes identified by the humoral responses of ovarian cancer patients.Cancer Immunol.Immunother. 46, 48–54 (1998).PubMedCrossRefGoogle Scholar
  7. Elangovan S., Moulton B.C.: Blastocyst implantation in the rat and the immunohistochemical distribution and rate of synthesis of uterine lysosomal cathepsin D.Biol.Reprod. 23, 663–668 (1980).PubMedCrossRefGoogle Scholar
  8. Ferrandina G., Scambia G., Panici P., Alamdori G., Paludetti G., Cadoni G., Distefano M., Maurizi M., Mancuso S.: Cathepsin D in primary squamous laryngeal tumors: correlation with clinico-pathological parameters and receptor status.Cancer Lett. 67, 133–138 (1992).PubMedCrossRefGoogle Scholar
  9. Freudenheim J.L., Marshall J.R., Graham S., Laughlin R., Vena J.E., Bandera E., Muti P., Swanson M., Nemoto T.: Exposure to breastmilk in infancy and the risk of breast cancer.Epidemiology 5, 324–331 (1994).PubMedCrossRefGoogle Scholar
  10. Fusek M., Větvička V.: Mitogenic function of human procathepsin D: the role of the propeptide.Biochem.J. 303, 775–780 (1994).PubMedGoogle Scholar
  11. Fusek M., Větvička V.:Aspartic Proteinases: Physiology and Pathology. CRC Press, Boca Raton 1995.Google Scholar
  12. Garcia M., Dercoq D., Pujol P., Rochefort H.: Overexpression of transfected cathepsin D in transformed cells increases their malignant phenotype and metastatic potency.Oncogene 5, 1809–1814 (1990).PubMedGoogle Scholar
  13. Glondu M., Coopman P., Laurent-Matha V., Garcia M., Rochefort H., Liaudet-Coopman E.: A mutated cathepsin-D devoid of its catalytic activity stimulates the growth of cancer cells.Oncogene 20, 6920–6929 (2001).PubMedCrossRefGoogle Scholar
  14. Glondu M., Liaudet-Coopman E., Derocq D., Platet N., Rochefort H., Garcia M.: Down-regulation of cathepsin-D expression by antisense gene transfer inhibits tumor growth and experimental lung metastasis of human breast cancer cells.Oncogene 21, 5127–5134 (2002).PubMedCrossRefGoogle Scholar
  15. Huet G., Zerimech F., Dieu M.C., Hemon B., Grard G., Balduyck M., Janin A., Lafyatis R., Degand P.: The state of differentiation of HT-29 colon carcinoma cells alters the secretion of cathepsin D and of plasminogen activator.Internat.J.Cancer 57, 875–882 (1994).CrossRefGoogle Scholar
  16. Johnson M.D., Torri J.A., Lippman M.E., Dickson R.B.: The role of cathepsin D in the invasiveness of human breast cancer cells.Cancer Res. 53, 873–877 (1993).PubMedGoogle Scholar
  17. Koelsch G., Metcalf P., Větvička V., Fusek M., p. 273 inAspartic Proteinases: Structure, Function, Biology, and Biomedical Implications (K. Takahashi, Ed.). Plenum Press, New York 1995.Google Scholar
  18. Kute T.E., Shao Z.M., Sugg N.K., Long R.T., Russell G.B., Case D.: Cathepsin D as a prognostic indicator for node-negative breast cancer patients using both immunoassays and enzymatic assays.Cancer Res. 52, 5198–5203 (1992).PubMedGoogle Scholar
  19. Lah T.T., Calaf G., Kaiman E., Shinde B.G., Russo J., Jarosz D., Zabrecky J., Somers R., Daskal I.: Cathepsins D. B and L in breast carcinoma and in transformed human breast epithelial cells (HBEC).Biol.Chem.Hoppe-Seyler 376, 357–363 (1995).PubMedGoogle Scholar
  20. Larsen L.B., Boisen A., Petersen T.E.: Procathepsin D cannot autoactivate to cathepsin D at acid pH.FEBS Lett. 319, 54–58 (1993).PubMedCrossRefGoogle Scholar
  21. Laury-Kleintop L.D., Coronel E.C., Lange M.K., Tachovsky T., Longo S., Tucker S., Alhadeff J.A.: Western blotting and isoform analysis of cathepsin D from normal and malignant human breast cell lines.Breast Cancer Res.Treat. 35, 211–220 (1995).PubMedCrossRefGoogle Scholar
  22. Leto G., Gebbia N., Rausa L., Tumminello F.M.: Cathepsin D in the malignant progression of neoplastic diseases.Anticancer Res. 12, 235–240 (1992).PubMedGoogle Scholar
  23. Leto G., Tumminello F.M., Crescimanno M., Flandina C., Gebbia N.: Cathepsin D expression levels in nongynecological solid tumors: clinical and therapeutic implications.Clin.Exp.Metastasis 21, 91–106 (2004).PubMedCrossRefGoogle Scholar
  24. Metaye T., Millet C., Kraimps J.L., Aubouin B., Barbier J., Begon F.: Estrogen receptors and cathepsin D in human thyroid tissue.Cancer 72, 1991–1996 (1993).PubMedCrossRefGoogle Scholar
  25. Metcalf P., Fusek M.: Two crystal structures for cathepsin D: the lysosomal targeting signal and active site.EMBO J. 12, 1293–1302 (1993).PubMedGoogle Scholar
  26. Nazeer T., Church K., Amato C., Ambros R.A., Rosano T.G., Malfetano J.H., Ross J.S.: Comparative quantitative immunohistochemical and immunoradiometric determinations of cathepsin D in endometrial adenocarcinoma: predictors of tumor aggressiveness.Modern Pathol. 7, 469–474 (1994).Google Scholar
  27. Parker L.: Breast-feeding and cancer prevention.Eur.J.Cancer 37, 155–158 (2001).PubMedCrossRefGoogle Scholar
  28. Podhajcer O.L., Bover L., Bravo A.L., Ledda M.F., Kairiyama C., Calb I., Guerra L., Capony F., Mordoh J.: Expression of cathepsin D in primary and metastatic human melanoma and dysplastic nevi.J.Invest.Dermatol. 104, 340–344 (1995).PubMedCrossRefGoogle Scholar
  29. Pujol P., Maudelonde T., Daures J.P., Rouanet P., Brouillet J.P., Pujol H., Rochefort H.: A prospective study of the prognostic value of cathepsin D levels in breast cancer cytosol.Cancer 71, 2006–2012 (1993).PubMedCrossRefGoogle Scholar
  30. Reid W.A., Vallor M.J., Kay J.: Immunolocalization of cathepsin D in normal and neoplastic human tissues.J.Clin.Pathol. 39, 1323–1330 (1986).PubMedCrossRefGoogle Scholar
  31. Rochefort H., Capony F., Garcia M., Cavailles V., Freiss G., Chambon M., Morisset M., Vignon F.: Estrogen-induced lysosomal proteases secreted by breast cancer cells: a role in carcinogenesis?J.Cell.Biochem. 35, 17–29 (1987).PubMedCrossRefGoogle Scholar
  32. Rochefort H.: Cathepsin D in breast cancer: a tissue marker associated with metastasis.Eur.J.Cancer 28A, 1780–1783 (1992a).PubMedCrossRefGoogle Scholar
  33. Rochefort H.: Biological and clinical significance of cathepsin D in breast cancer.Acta Oncol. 31, 125–130 (1992b).PubMedCrossRefGoogle Scholar
  34. Rochefort H.: Estrogen-induced genes in breast cancer, and their medical importance.Bull.Acad.Nat.Med. 183, 955–968 (1999).PubMedGoogle Scholar
  35. Schultz D.C., Bazel S., Wright L.M., Tucker S., Lange M.K., Tachovsky T., Longo S., Niedbala S., Alhadeff J.A.: Western blotting and enzymatic activity analysis of cathepsin D in breast tissue and sera of patients with breast cancer and benign breast disease and of normal controls.Cancer Res. 54, 48–54 (1994).PubMedGoogle Scholar
  36. Spyratos F., Brouillet J.P., Defrenne A., Hacene K., Rouesse J., Maudelonde T., Brunet M., Andrieu C., Desplaces A., Rochefort H.: Cathepsin D: an independent prognostic factor for metastasis of breast cancer.Lancet 2, 1115–1118 (1989).PubMedCrossRefGoogle Scholar
  37. Tang J., Wong R.N.S.: Evolution in the structure and function of aspartic proteases.J.Cell.Biochem. 33, 53–63 (1987).PubMedCrossRefGoogle Scholar
  38. Taylor D.D., Gercel-Taylor C.: Tumor-reactive immunoglobulins in ovarian cancer: diagnostic and therapeutic significance?Oncol.Rep. 5, 1519–1524 (1998).PubMedGoogle Scholar
  39. Tedone T., Correale M., Barbadossa G., Casavola V., Paradiso A., Reshkin S.J.: Release of the aspartyl protease cathepsin D is associated with and facilitates human breast cancer cell invasion.FASEB J. 11, 785–792 (1997).PubMedGoogle Scholar
  40. Větvička V., Vagner J., Baudyš M., Tang J., Foundling S.I., Fusek M.: Human breast milk contains procathepsin-D detection by specific antibodies.Biochem.Mol.Biol.Internat. 30, 921–928 (1993).Google Scholar
  41. Větvička V., Větvičkova J., Hilgert I., Vobůrka Z., Fusek M.: Analysis of the interaction of procathepsin D activation peptide with breast cancer cells.Internat.J.Cancer 73, 403–409 (1997).CrossRefGoogle Scholar
  42. Větvička V., Větvičkova J., Fusek M.: Effect of procathepsin D and its activation peptide on prostate cancer cells.Cancer Lett. 129, 55–59 (1998).PubMedCrossRefGoogle Scholar
  43. Větvička V. Větvičková J., Fusek M.: Anti-human procathepsin D activation peptide antibodies inhibit breast cancer development.Breast Cancer Res.Treat. 57, 261–269 (1999).PubMedCrossRefGoogle Scholar
  44. Větvička V., Větvičkova J., Fusek M.: Role of procathepsin D activation peptide in prostate cancer growth.Prostate 44, 1–7 (2000).PubMedCrossRefGoogle Scholar
  45. Větvička V., Beneš P., Fusek M.: Procathepsin D in breast cancer: what do we know? Effects of ribozymes and other inhibitors.Cancer Gene Ther. 9, 854–863 (2002).PubMedCrossRefGoogle Scholar
  46. Westley B., Rochefort H.: A secreted glycoprotein induced by estrogen in human breast cancer cell lines.Cell 20, 353–362 (1980).PubMedCrossRefGoogle Scholar

Copyright information

© Institute of Microbiology, Academy of Sciences of the Czech Republic 2005

Authors and Affiliations

  1. 1.Department of Pathology and Laboratory Medicine, School of MedicineUniversity of LouisvilleLouisvilleUSA
  2. 2.Institute of Organic Chemistry and BiochemistryAcademy of Sciences of the Czech RepublicProgueCzechia

Personalised recommendations