Advertisement

Folia Microbiologica

, Volume 50, Issue 1, pp 24–30 | Cite as

Lipid analysis of the plasma membrane and mitochondria of brewer’s yeast

  • B. BlagovićEmail author
  • J. Rupčić
  • M. Mesarić
  • V. Marić
Article

Abstract

The plasma membrane and mitochondria of bottom fermenting brewer’s yeast obtained as a by-product of industrial beer production were isolated and the lipid fraction was analyzed. The phospholipid content accounted for 78 mg/g protein in the plasma membrane and 59 mg/g protein in the mitochondria. Major phospholipids in both preparations were phosphatidylinositol, phosphatidylcholine and phosphatidyl-ethanolamine but their proportions differed significantly. In the plasma membrane phosphatidy linositol, and in the mitochondria phosphatidylcholine were present in the highest concentration (37 and 30 %, respectively). The main classes of neutral lipids (triacylglycerols, ergosterol, squalene and steryl esters) were twice more abundant in the plasma membrane than in the mitochondria (61 and 33 mg/g protein, respectively). A characteristic of the neutral lipid composition of both organelles was the low content of ergosterol (12 and 7 mg/g protein, respectively) and a high content of squalene (25 and 22 mg/g protein). The main feature of the fatty acid composition of both organelles was the preponderance of saturated fatty acids (78 and 79 %, respectively), among which palmitic acid was the principal one. The most expressed characteristics of lipid fractions of the analyzed plasma membranes and mitochondria, high concentration of squalene and preponderance of saturated fatty acids are the consequences of anaerobic growth conditions. The lack of oxygen had possibly the strongest effect on the lipid composition of the plasma membranes and mitochondria of bottom fermenting brewer’s yeast.

Keywords

Saccharomyces Cerevisiae Neutral Lipid Ergosterol Squalene Ethanol Tolerance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

BSA

bovine serum albumin

DMPtdEtn

dimethylphosphatidylethanolamine

Lyso-PL

lysophospholipids

PA

phosphatidic acid

PM

plasma membrane(s)

PtdEtn

phosphatidylethanolamine

PtdSer

phosphatidylserine

TFA

total FA

TPL

total PL

CL

cardiolipin

FA

fatty acid(s)

MT

mitochondria

PL

phospholipid(s)

PtdCho

phosphatidylcholine

PtdIns

phosphatidylinostiol

SDS-PAGE

sodium dodecylsulfate polyacrylamide gel electrophoresis

VLCFA

very long-chain FA

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Achleitner G., Gaigg B., Krasser A., Kainersdorfer E., Kohlwein S.D., Perktold A., Zellnig G., Daum G.: Association between the endoplasmic reticulum and mitochondria of yeast facilitates interorganelle transport of phospholipids through membrane contact.Eur.J.Biochem.264, 545–553 (1999).PubMedCrossRefGoogle Scholar
  2. Athenstaedt K., Daum G.: Biosynthesis of phosphatidic acid in the yeastSaccharomyces cerevisiae, pp. 17–28 in H. Dipak, K.D. Salil (Eds):Lipids: Glycerolipid Metabolizing Enzymes. Research Signpost, Kerala (India) 2002.Google Scholar
  3. Blagović B., Rupčić J., Mesaric M., Georgiú K., Marić V.: Lipid composition of brewer’s yeast.Food Technol.Biotechnol.39, 175–181 (2001).Google Scholar
  4. Broekhuyse R.M.: Phospholipids in tissues of the eye.Biochim.Biophys.Acta152, 307–315 (1968).PubMedGoogle Scholar
  5. Cahoon E.B., Mills L.A., Shanklin J.: Modification of the fatty acid composition ofEscherichia coli by coexpression of plant acyl-acyl carrier protein desaturase and ferredoxin.J.Bacteriol.178, 936–939 (1996).PubMedGoogle Scholar
  6. Capaldi R.A.: The changing face of mitochondrial research.Trends Biochem.Sci.25, 212–214 (2000).PubMedCrossRefGoogle Scholar
  7. Casey W.M., Rolph C.F., Tomeo M.E., Parks L.W.: Effects of unsaturated fatty acid supplementation on phospholipid and triacylglycerol biosynthesis inSaccharomyces cerevisiae.Biochem.Biophys.Res.Com.193, 1297–1303 (1993).PubMedCrossRefGoogle Scholar
  8. Ciesarova Z., Šmogrovičova D.: A study of ethanol tolerance in yeasts. (In Slovak)Chem.Listy90, 365–370 (1996).Google Scholar
  9. Ciesarová Z., Šmogrovičová D., Dömény Z.: Enhancement of yeast ethanol tolerance by calcium and magnesium.Folia Microbiol.41, 485–488 (1996).CrossRefGoogle Scholar
  10. Daum G., Vance J.E.: Imports of lipids into mitochondria.Prog.Lipid Res.36, 103–130 (1997).PubMedCrossRefGoogle Scholar
  11. Daum G., Lees N.D., Bard M., Dickson R.: Biochemistry, cell biology and molecular biology of lipids ofSaccharomyces cerevisiae.Yeast14, 1471–1510 (1998).PubMedCrossRefGoogle Scholar
  12. Daum G., Tuller G., Nemec T., Hrastnik C., Balliano G., Cattel L., Milla P., Rocco F., Conzelmann A., Vionnet C., Kelly E.D., Kelly S., Schweizer E., Schüller H.-J., Hojad U., Greiner E., Finger K.: Systematic analysis of yeast strains with possible defects in lipid metabolism.Yeast15, 601–614 (1999).PubMedCrossRefGoogle Scholar
  13. Flegelová H., Chaloupka R., Novotná D., Maláč J., Gášková D., Sigler K., Janderová B.: Changes in plasma membrane fluidity lower the sensitivity ofS. cerevisiae to killer toxin K1.Folia Microbiol.48, 761–766 (2003).CrossRefGoogle Scholar
  14. Folch J., Lees M., Sloane-Stanley G.H.: A simple method for the isolation and purification of total lipids from animal tissues.J.Biol.Chem.226, 497–509 (1957).PubMedGoogle Scholar
  15. Gaigg B., Simbeni R., Hrastnik C., Paltauf F., Daum G.: Characterization of a microsomal subfraction associated with mitochondria of the yeast,Saccharomyces cerevisiae.Biochim.Biophys.Acta1234, 214–220 (1995).PubMedCrossRefGoogle Scholar
  16. Grant A.M., Hanson P.K., Malone L., Nichols J.W.: NBD-labeled phosphatidylcholine and phosphatidylethanolamine are internalized by transbilayer transport across the yeast plasma membrane.Traffic2, 37–50 (2001).PubMedCrossRefGoogle Scholar
  17. Haid A., Suissa M.: Immunochemical identification of membrane proteins after sodium dodecyl sulfate-polyacrylamide gel electrophoresis.Meth.Enzymol.96, 192–205 (1983).PubMedCrossRefGoogle Scholar
  18. Hammond J.R.M.: Yeast growth and nutrition, pp. 77–84 in K. Smart (Ed.):Brewing Yeast Fermentation Performance. Blackwell Science, Oxford (UK) 2000.Google Scholar
  19. van den Hazel H.B., Pichler H., do Valle Matta M.A., Leitner E., Goffeau A., Daum G.:PDR16 andPDR17, two homologous genes ofSaccharomyces cerevisiae, affect lipid biosynthesis and resistance to multiple drugs.J.Biol.Chem.274, 1934–1941 (1999).PubMedCrossRefGoogle Scholar
  20. Heipieper H.J., Isken S., Saliola M.: Ethanol tolerance and membrane fatty acid adaptation inadh multiple and null mutants ofKluyveromyces lactis.Res.Microbiol.151, 777–784 (2000).PubMedCrossRefGoogle Scholar
  21. Jahnke L., Klein H.P.: Oxygen requirement for formation and activity of the squalene epoxidase inSaccharomyces cerevisiae.J.Bacteriol.155, 488–492 (1983).PubMedGoogle Scholar
  22. Janssen M.J.F.W., Koorengevel M.C., de Kruijff B., de Kroon A.I.P.M.: Transbilayer movement of phosphatidylcholine in the mitochondrial outer membrane ofSaccharomyces cerevisiae is rapid and bidirectional.Biochim.Biophys.Acta1421, 64–76 (1999).PubMedCrossRefGoogle Scholar
  23. Janssen M.J.F.W., Koorengevel M.C., de Kruijff B., de Kroon A.I.P.M.: The phosphatidylcholine to phosphatidylethanolamine ratio ofSaccharomyces cerevisiae varies with the growth phase.Yeast16, 641–650 (2000).PubMedCrossRefGoogle Scholar
  24. Khaware R.K., Koul A., Prasad R.: High membrane fluidity is related to NaCl stress inCandida membranaefaciens.Biochem.Mol. Biol.Internat.35, 875–880 (1995).Google Scholar
  25. Krasowska A., Chmielewska L., Gapa D., Prescha A., Vachová L., Sigler K.: Viability and formation of conjugated dienes in plasma membrane lipids ofSaccharomyces cerevistae, Schizosaccharomyces pombe, Rhodotorula glutinis andCandida albicans exposed to hydrophilic, amphiphilic and hydrophobic pro-oxidants.Folia Microbiol.47, 145–151 (2002).CrossRefGoogle Scholar
  26. Laemmli U.K.: Cleavage of structural protein during the assembly of the head of the bacteriophage T4.Nature227, 680–685 (1970).PubMedCrossRefGoogle Scholar
  27. Löffler J., Einsele H., Hebart H., Scumacher U., Hrastnik C., Daum G.: Phospholipid and sterol analysis of plasma membranes of azole-resistantCandida albicans strains.FEMS Microbiol.Lett.185, 59–63 (2000).PubMedCrossRefGoogle Scholar
  28. Marx U., Polakowski T., Pomorski T., Lang C., Nelson N., Herrmann A.: Rapid transbilayer movement of fluorescent phospholipid analogues in the plasma membrane of endocytosis-deficient yeast cells does not require the Drs2 protein.Eur.J.Biochem.263, 254–263 (1999).PubMedCrossRefGoogle Scholar
  29. Mishra P., Prasad R.: Role of phospholipid head groups in ethanol tolerance ofSaccharomyces cerevisiae.J.Gen.Microbiol.134, 3205–3211 (1988).PubMedGoogle Scholar
  30. Mishra P., Prasad R.: Relationship between ethanol tolerance and fatty acyl composition ofSaccharomyces cerevisiae.Appl.Environ. Microbiol.30, 294–298 (1989).Google Scholar
  31. Mizoguhi H.: Acquisition of ethanol tolerance bySaccharomyces cerevisiae in the sake brewing process and the tolerance determinants.Seibutsu-Kogaku76, 122–130 (1998).Google Scholar
  32. Mizoguchi H., Hara S.: Ethanol-induced alterations in lipid composition ofSaccharomyces cerevisiae in the presence of exogenous fatty acids.J.Ferment.Bioeng.83, 12–16 (1997).CrossRefGoogle Scholar
  33. Murakami Y., Yokoigawa K., Kawai F., Kawai H.: Lipid composition of commercial baker’s yeasts having different freeze-tolerance in frozen dough.Biosci.Biotech.Biochem.60, 1874–1876 (1996).CrossRefGoogle Scholar
  34. O’Connor-Cox E.S.C., Lodolo E.J., Axcell B.C.: Mitochondrial relevance to yeast fermentative performance: a review.J.Inst.Brew.102, 19–25 (1996).Google Scholar
  35. Paltauf F., Kohlwein S., Henry S.A.: Regulation and compartmentalization of lipid synthesis in yeast, pp. 415–500 inThe Molecular and Cellular Biology of the Yeast Saccharomyces cerevisiae:Gene Expression. Cold Spring Harbor Laberatory Press, New York 1992.Google Scholar
  36. Patton J.L., Lester R.L.: The phosphoinositol sphingolipids ofSaccharomyces cerevisiae are highly localized in the plasma membrane.J.Bacteriol.173, 3101–3108 (1991).PubMedGoogle Scholar
  37. Pichler H., Gaigg B., Hrastnik C., Achleitner G., Kohlwein S.D., Zellnig G., Perktold A., Daum G.: A subfraction of the yeast endoplasmic reticulum associates with the plasma membrane and has a high capacity to synthesize lipids.Eur.J.Biochem.268, 2351–2361 (2001).PubMedCrossRefGoogle Scholar
  38. Piper P.W.: The heat shock and ethanol stress responses of yeast exhibit extensive similarity and functional overlap.FEMS Microbiol. Lett.134, 121–127 (1995).PubMedCrossRefGoogle Scholar
  39. van den Rest M.E., Kamminga A.H., Nakano A., Anraku Y., Poolman B., Konings W.N.: The plasma membrane ofSaccharomyces cerevisiae: structure, function, and biogenesis.Microbiol.Rev.59, 304–322 (1995).PubMedGoogle Scholar
  40. Rupčić J., Blagović B., Maric V.: Cell lipids of theCandida lipolytica yeast grown on methanol.J.Chromatogr. A755, 75–80 (1996).PubMedCrossRefGoogle Scholar
  41. Rupčić J., Mlsarić M., Rupčić J., Mesaric M., Maric V.: The influence of carbon source on the level and composition of ceramides of theCandida lipolytica yeast.Appl.Microbiol.Biotechnol.50, 583–588 (1998).PubMedCrossRefGoogle Scholar
  42. Šajbidor J.: Effect of some environmental factors on the content and composition of microbial membrane lipids.Crit.Rev.Biotechnol.17, 87–103 (1997).PubMedCrossRefGoogle Scholar
  43. Šajbidor J., Grego J.: Fatty acid alterations inSaccharomyces cerevisiae exposed to ethanol stress.FEMS Microbiol.Lett.93, 13–16 (1992).CrossRefGoogle Scholar
  44. Šajbidor J., Ciesarova Z., Šmogrovičová D.: Influence of ethanol on the lipid content and fatty acid composition ofSaccharomyces cerevisiae.Folia Microbiol.40, 508–510 (1995).CrossRefGoogle Scholar
  45. Schneiter R., Kohlwein S.D.: Organelle structure, function, and inheritance in yeast: a role for fatty acid synthesis?Cell88, 431–434 (1997).PubMedCrossRefGoogle Scholar
  46. Schneiter R., Brügger B., Sandhoff R., Zellnig G., Leber A., Lampl M., Athenstaedt, Hrastnik C., Eder S., Daum G., Paltauf F., Wieland F.T., Kohlwein S.D.: Electrospray ionization tandem mass spectrometry (ESI-MS/MS) analysis of the lipid molecular species composition of yeast subcellular membranes reveals acyl chain-based sorting/remodeling of distinct molecular species and route to the plasma membrane.J.Cell Biol.146, 741–754 (1999).PubMedCrossRefGoogle Scholar
  47. Sorger D., Daum G.: Triacylglycerol biosynthesis in yeast.Appl.Microbiol.Biotechnol.61, 289–299 (2003).PubMedGoogle Scholar
  48. Suutari M., Ljukkonen K., Laakso S.: Temperature adaptation in yeasts: the role of fatty acids.J.Gen.Microbiol.136, 1469–1474 (1990).PubMedGoogle Scholar
  49. Tuller G., Nemec T., Hrastnik C., Daum G.: Lipid composition of subcellular membranes of an FY1679-derived haploid yeast wild-type strain grown on different carbon sources.Yeast15, 1555–1564 (1999).PubMedCrossRefGoogle Scholar
  50. Vorbeck M.L., Mattick L.R., Lee F.A., Pederson C.S.: Preparation of methyl esters of fatty acids for gas-lipid chromatography.Anal.Chem.33, 1512–1514 (1961).CrossRefGoogle Scholar
  51. Zinser E., Daum G.: Isolation and biochemical characterization of organelles from the yeastSaccharomyces cerevisiae.Yeast11, 493–536 (1995).PubMedCrossRefGoogle Scholar
  52. Zinser E., Sperka-Gottlieb C.D.M., Fasch E.-V., Kohlwein S.D., Paltauf F., Daum G.: Phospholipid synthesis and lipid composition of subcellular membranes in the unicellular eukaryoteSaccharomyces cerevisiae.J.Bacteriol.173, 2026–2034 (1991).PubMedGoogle Scholar
  53. Zinser E., Paltauf F., Daum G.: Sterol composition of yeast organelle membranes and subcellular distribution of enzymes involved in sterol metabolism.J.Bacteriol.175, 2853–2858 (1993).PubMedGoogle Scholar

Copyright information

© Institute of Microbiology, Academy of Sciences of the Czech Republic 2005

Authors and Affiliations

  • B. Blagović
    • 1
    Email author
  • J. Rupčić
    • 1
  • M. Mesarić
    • 2
  • V. Marić
    • 3
  1. 1.Department of Chemistry and Biochemistry, Faculty of MedicineUniversity of RijekaRijekaCroatia
  2. 2.Department of Chemistry and Biochemistry, Faculty of MedicineUniversity of ZagrebZagrebCroatia
  3. 3.Department of Biochemical Engineering, Faculty of Food Technology and BiotechnologyUniversity of ZagrebZagrebCroana

Personalised recommendations