Folia Microbiologica

, Volume 48, Issue 1, pp 111–115 | Cite as

Human tumor cells are selectively inhibited by colicins



The activityin vitro of four types of colicins (A, E1, E3, U) against one human standard fibroblast line and against 11 human tumor-cell lines carrying defined mutations of thep53 gene was quantified by MTT (tetrazolium bromide) assay. Flow cytometry showed that the pore-forming colicins A, E1 and U affected the cell cycle of 5 of these cell lines. Colicins E3 and U did not show any distinct inhibitory effects on the cell lines, while colicins E1 and especially A inhibited the growth of all of them (with one exception concerning colicin E1). Colicin E1 inhibited the growth of the tumor lines by 17–40% and standard fibroblasts MRC5 by 11%. Colicin A exhibited a differentiated 16–56% inhibition, the growth of standard fibroblasts being inhibited by 36%. In three of the lines, colicins A and E1 increased the number of cells in the G1 phase (by 12–58%) and in apoptosis (by 7–58%). These results correlated with the data from sensitivity assays. Hence, the inhibitory effect of colicins on eukaryotic cells is cell-selective, colicin-specific and can be considered to be cytotoxic.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Farkas-Himsley H., Cheung R.: Bacterial proteinaceous products (bacteriocins) as cytotoxic agent of neoplasia.Cancer Res.36, 3561–3567 (1976).PubMedGoogle Scholar
  2. Farkas-Himsley H., Musclow C.E.: Bacteriocin receptors on malignant mammalian cells: are they transferrin receptors?Cell Mol. Biol.32, 607–617 (1986).PubMedGoogle Scholar
  3. Farkas-Himsley H., Musclow C.E., Weitzman S.S., Herridge M.: Acute lymphoblastic leukemia of childhood monitored by bacteriocin and flow cytometry.Eur.J.Cancer Clin.Oncol.23, 411–418 (1987).PubMedCrossRefGoogle Scholar
  4. Lauková A., Mareková M.: Production of bacteriocins by different enterococcal isolates.Folia Microbiol.46, 49–52 (2001).CrossRefGoogle Scholar
  5. Levine A.J.:p53, the cellular gatekeeper for growth and division.Cell88, 323–331 (1997).PubMedCrossRefGoogle Scholar
  6. Lokaj J., Šmarda J., Mach J.: Colicin E3 enhances the oxidoreductive activity of guinea-pig leukocytes.Experientia38, 1352–1353 (1982).CrossRefGoogle Scholar
  7. Mercer W.E.: Checking on the cell cycle.J.Cell Biochem.31 (Suppl.), 50–54 (1998).CrossRefGoogle Scholar
  8. Morovský M., Pristaš P., Javorský P.: Bacteriocins of ruminal bacteria.Folia Microbiol.46, 61–62 (2001).CrossRefGoogle Scholar
  9. Pestell K.E., Medlow C.J., Titley J.C., Kelland L.R., Walton M.I.: Characterization of thep53 status, BCL-2 expression and radiation and platinum drug sensitivity of a panel of human ovarian cancer cell lines.Internat.J.Cancer77, 913–918 (1998).CrossRefGoogle Scholar
  10. Saito H., Watanabe T.: Effect of bacteriocin produced byMycobacterium smegmatis on growth of cultured tumor and normal cells.Cancer Res.39, 5114–5117 (1979).PubMedGoogle Scholar
  11. Schafer K.A.: The cell cycle: a review.Vet.Pathol.35, 461–478 (1998).PubMedCrossRefGoogle Scholar
  12. Šmarda J.: The action of colicins on eukaryotic cells.J.Toxicol.Toxin Rev.2, 1–76 (1983).Google Scholar
  13. Šmarda J., Macholán L.: Binding domains of colicins E1, E2 and E3 in the receptor protein BtuB ofEscherichia coli.Folia Microbiol.45, 379–386 (2000).CrossRefGoogle Scholar
  14. Šmarda J., Oravec C.: Cytocidal effect of bacteriocins toward lymphatic cells. (In Czech)Aktual.Klin.Onkol.21, 209–212 (1989).Google Scholar
  15. Šmarda J., Schuhmann E.: Studies of colicin action on wall-less stable L-forms ofEscherichia coli — I. Degree of attachment and of killing effect on rods and stable L-form cells.Z.Allg.Mikrobiol.19, 511–516 (1979).PubMedCrossRefGoogle Scholar
  16. Šmarda J., Šmajs D.: Colicins — exocellular lethal proteins ofEscherichia coli.Folia Microbiol.43, 563–582 (1998).CrossRefGoogle Scholar
  17. Šmarda J., Obdržálek V., Táborský I., Mach J.: The cytotoxic and cytocidal effect of colicin E3 on mammalian tissue cells.Folia Microbiol.23, 272–277 (1978).CrossRefGoogle Scholar
  18. Šmarda J., Fialová M., Šmarda J. Jr.: Cytotoxic effects of colicins E1 and E3 onv-myb-transformed chicken monoblasts.Folia Biol.47, 11–13 (2001).Google Scholar
  19. Šmarda J., Matějková P., Vavříčková A.: Translocation of colicin from the receptor to the inner cell membrane: function of the peptidoglycan layer.Folia Microbiol.47, 213–217 (2002).CrossRefGoogle Scholar

Copyright information

© Institute of Microbiology, Academy of Sciences of the Czech Republic 2003

Authors and Affiliations

  1. 1.Department of Biology, Faculty of MedicineMasaryk UniversityBrnoCzechia

Personalised recommendations