Advertisement

Folia Microbiologica

, Volume 48, Issue 1, pp 71–75 | Cite as

Fatty acid composition of six freshwater wild cyanobacterial species

  • T. Řezanka
  • I. Dor
  • A. Prell
  • V. M. Dembitsky
Article

Abstract

Hydroxy,n-saturated, branched, dioic, and unsaturated fatty acids in six freshwater wild cyanobacteria (Chroococcus minutus, Lyngbya ceylanica, Merismopedia glauca, Nodularia sphaerocarpa, Nostoc linckia, andSynechococcus aeruginosus) collected from different lakes and springs of Israel have been identified by gas chromatography-mass spectrometry (GC-MS).

Keywords

Fatty Acid Composition Cellular Fatty Acid Cyanobacterial Species Negev Desert Freshwater Cyanobacterium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agrawal S.C., Singh V.: Vegetative survival, akinete formation and germination in three blue-green algae and one green alga in relation to light intensity, temperature, heat shock and UV exposure.Folia Microbiol.45, 439–448 (2000).CrossRefGoogle Scholar
  2. Agrawal S.C., Singh V.: Viability of dried filaments, survivability and reproduction under water stress, and survivability following heat and UV exposure inLyngbya martensiana, Oscillatoria agardhii, Nostoc calcicola, Hormidium fluitans, Spirogyra sp. andVaucheria geminata.Folia Microbiol.47, 61–68 (2002).CrossRefGoogle Scholar
  3. Barghoorn E.S.: The antiquity of life, pp. 71–84 inEnvironmental Evolution (L. Margulis, L. Olendzenski, Eds). MIT Press, Cambridge (USA) 1992.Google Scholar
  4. Carmichael W.W.: Cyanobacteria secondary metabolites — the cyanotoxines.J.Appl.Bacteriol.72, 445–459 (1992).PubMedGoogle Scholar
  5. Carmichael W.W., Azevedo S.M.F.O., An J.S., Molica R.J.R., Jochimsen E.M., Lau S., Rinehart K.L., Shaw G.R., Eaglesham G.K.: Human fatalities from cyanobacteria: chemical and biological evidence for cyanotoxins.Environ.Health Perspect.109, 663–668 (2001).PubMedCrossRefGoogle Scholar
  6. Caudales R., Wells J.M.: Differentiation of the free-livingAnabaena andNostoc cyanobacteria on the basis of fatty acid composition.Internat.J.Syst.Bacteriol.42, 246–251 (1992).CrossRefGoogle Scholar
  7. Dembitsky V.M., Shkrob I., Dor I.: Separation and identification of hydrocarbons and other volatile compounds from cultured blue-green algaNostoc sp. by gas chromatography-mass spectrometry using serially coupled capillary columns with consecutive nonpolar and semipolar stationary phases.J.Chromatogr.A862, 221–229 (1999).PubMedCrossRefGoogle Scholar
  8. Dembitsky V.M., Shkrob I., Lev O.: Occurrence of volatile nitrogen containing compounds in nitrogen fixing cyanobacteriumAphanozomenon flos-aquae.J.Chem.Ecol.26, 1359–1366 (2000a).CrossRefGoogle Scholar
  9. Dembitsky V.M., Dor I., Shkrob I.: Variability of lipid compounds of the soil cyanobacteriumMicrocoleus vaginatus from Dead Sea basin and Negev desert.Biochemistry (Moscow)65, 1403–1408 (2000b).CrossRefGoogle Scholar
  10. Dembitsky V.M., Shkrob I., Go J.V.: Dicarboxylic and fatty acid compositions of the genusAphanizomenon.Biochemistry (Moscow)66, 72–76 (2001a).CrossRefGoogle Scholar
  11. Dembitsky V.M., Dor I., Shkrob I., Aki M.: Branched alkanes and other apolar compounds produced by the cyanobacteriumMicrocoleus vaginatus from the Negev Desert.Russ.J.Bioorg.Chem.27, 110–119 (2001b).CrossRefGoogle Scholar
  12. Dor I.: Preservation and microscopy of blue-green algae (cyanobacteria) on dry agar.Bot.Mar.30, 507–510 (1987).CrossRefGoogle Scholar
  13. Embley T.M., Wait R.: Structural lipids of eubacteria, pp. 121–161 inChemical Methods in Prokaryotic Systematics (M. Goodfellow, A.G. O’Donnell, Eds). John Wiley & Sons, Chichester-New York-Brisbane-Toronto-Singapore 1994.Google Scholar
  14. Hall I.H., Izydore R.A., Warren A.E., Barnes C.R.: Cytotoxicity and mode of action of aliphatic dicarboxylic acids in L1210 lymphocytic leukemia cells.Anticancer Res.19, 205–211 (1999).PubMedGoogle Scholar
  15. Holton R.W., Blecker H.H., Onore M.: Effect of growth temperature on the fatty acid composition of a blue-green alga.Phytochemistry3, 595–602 (1964).CrossRefGoogle Scholar
  16. Kenyon C.N.: Fatty acid composition of unicellular strains of blue-green algae.J.Bacteriol.109, 827–834 (1972).PubMedGoogle Scholar
  17. Kenyon C.N., Rippka R., Stanier R.Y.: Fatty acid composition and physiological properties of some filamentous blue-green algae.Arch.Microbiol.83, 216–236 (1972).Google Scholar
  18. Rerwin J.: Fatty acids in evolution of life, pp. 163–201 inIsopentenoids and Other Natural Products: Evolution and Function. ACS Symposium, Ser. No. 562 (W.D. Nes, Ed.). American Chemist’s Society, Washington (DC) 1994.Google Scholar
  19. Kruger G.H.J., Wet H.D., Kock J.L.F., Pieterse A.J.H.: Fatty acid composition as taxonomic characteristic forMicrocystis and other coccoid cyanobacteria (blue-green alga) isolates.Hydrobiologia308, 145–151 (1995).Google Scholar
  20. Lennarz W.J.: Lipid metabolism in the bacteria.Adv.Lipid Res.4, 175–225 (1966).PubMedGoogle Scholar
  21. Ma X., Baraona E., Goozner B.G., Lieber C.S.: Gender differences in medium-chain dicarboxylic aciduria in alcoholic men and women.Amer.J.Med.106, 70–75 (1999).PubMedCrossRefGoogle Scholar
  22. Martin S.A.: Manipulation of ruminal fermentation with organic acids: a review.J.Anim.Sci.76, 3123–3132 (1998).PubMedGoogle Scholar
  23. Metcalfe L.D., Wang C.N.: Rapid preparation of fatty-acid methyl-esters using organic base-catalyzed trans-esterification.J.Chromatogr.Sci.19, 530–535 (1981).Google Scholar
  24. Murata N., Nishida I.: Lipids of cyanobacteria, pp. 315–347 inThe Biochemistry of Plants, Vol. 9. Lipids: Structure and Function (P.K. Stumpf, Ed.). Academic Press, Orlando (USA) 1987.Google Scholar
  25. Murata N., Wada H., Gombos Z.: Modes of fatty acid desaturation in cyanobacteria.Plant Cell Physiol.33, 933–941 (1992).Google Scholar
  26. Řezanka T., Zahradník J., Podojil M.: Hydrocarbons in green and blue-green algae.Folia Microbiol.27, 450–454 (1982).CrossRefGoogle Scholar
  27. Schneider H., Gelpi E., Bennett E.O., Oro J.: Fatty acids of geochemical significance in microscopic algae.Phytochemistry9, 613–617 (1970).CrossRefGoogle Scholar
  28. Stanier R.Y., Kunisawa R., Mandel M., Cohen-Bazire G.: Purification and properties of unicellular blue-green algae (orderChroococcales).Bacteriol.Rev.32, 171–205 (1971).Google Scholar
  29. Welch D.F.: Application of cellular fatty acid analysis.Clin.Microbiol.Rev.4, 422–438 (1991).PubMedGoogle Scholar
  30. Wiley Registry of Mass Spectral Data (F. McLafferty, Ed.). Upgrade license from 6th ed. to 7th ed. CD-ROM (ISBN 0-471-44095-7) Software, January 2000.Google Scholar

Copyright information

© Institute of Microbiology, Academy of Sciences of the Czech Republic 2003

Authors and Affiliations

  • T. Řezanka
    • 1
  • I. Dor
    • 2
  • A. Prell
    • 1
  • V. M. Dembitsky
    • 3
  1. 1.Institute of MicrobiologyAcademy of Sciences of the Czech RepublicPragueCzechia
  2. 2.Division of Environmental Sciences, Graduate School of Applied ScienceThe Hebrew University of JerusalemJerusalemIsrael
  3. 3.Department of Medicinal Chemistry and Natural Products, School of PharmacyThe Hebrew University of JerusalemJerusalemIsrael

Personalised recommendations