Advertisement

Folia Microbiologica

, 48:27 | Cite as

Biodegradable plastics from renewable sources

  • M. Flieger
  • M. Kantorová
  • A. Prell
  • T. Řezanka
  • J. Votruba
Review

Abstract

Plastic waste disposal is a huge ecotechnological problem and one of the approaches to solving this problem is the development of biodegradable plastics. This review summarizes data on their use, biodegradability, commercial reliability and production from renewable resources. Some commercially successful biodegradable plastics are based on chemical synthesis (i.e. polyglycolic acid, polylactic acid, polycaprolactone, and polyvinyl alcohol). Others are products of microbial fermentations (i.e. polyesters and neutral polysaccharides) or are prepared from chemically modified natural products (e.g., starch, cellulose, chitin or soy protein).

Keywords

Starch Chitosan Chitin Polylactic Acid Cellulose Acetate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Agrawal C.M., Ray R.B.: Biodegradable polymeric scaffolds for musculoskeletal tissue engineering.J.Biomed.Mater.Res. 55, 141–150 (2001).PubMedCrossRefGoogle Scholar
  2. Anderson A.J., Dawes E.A.: Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates.Microbiol.Rev. 54, 450–472 (1990).PubMedGoogle Scholar
  3. Anonymous: Technology Foresight. Environment-Felated Issues. Report OECD, DSTI/STP/TIP (98) 110, Paris 1998.Google Scholar
  4. Anonymous: Current Situation and Strategies of Chemical Companies on Functional Plastics. Report E21-9. Dia Research Martech, New York 2000a.Google Scholar
  5. Anonymous: Biological Treatment of Biodegradable Waste — 1st draft. Working Document EC-DG.ENV.E3, Brussels 2000b.Google Scholar
  6. Anonymous: Annual Report 2000. Monsanto Company, St. Louis (USA) 2000c.Google Scholar
  7. Anonymous: On a Dextran Preparation, Produced using Leuconostoc mesenteroides, Saccharomyces cerevisiae and Lactobacillus sp., as a Novel Food Ingredient in Bakery Products. Opinion of the Scientific Committee on Food. Final Document EC-CS/NF/DOS/7/ADD, 3rd (final) version. Brussels 2000d.Google Scholar
  8. Aquino A.C.M.M., Jorge J.A., Terenzi H.F., Polizeli M.L.T.M.: Thermostable glucose-tolerant glucoamylase produced by the thermophilic fungusScytalidium thermophilum.Folia Microbiol. 46, 11–16 (2001).CrossRefGoogle Scholar
  9. Augustín J.: Glucans as modulating polysaccharides, their characteristics and isolation from microbiological sources.Biologia 53, 277–282 (1998).Google Scholar
  10. Averous L., Fringant C.: Association between plasticized starch and polyesters: processing and performances of injected biodegradable systems.Polym.Eng.Sci. 41, 727–734 (2001).CrossRefGoogle Scholar
  11. Banik R.M., Kanari B., Upadhyay S.N.: Exopolysaccharide of the gellan family: prospects and potential.World J.Microbiol.Biotechnol. 16, 407–414 (2000).CrossRefGoogle Scholar
  12. Bastioli C.: Properties and applications of Mater-Bi starch-based materials.Polym.Degradat.Stabil. 59 (special issue), 263–272 (1998a).CrossRefGoogle Scholar
  13. Bastioli C.: Biodegradable materials — present situation and future perspectives.Macromol.Symp. 135, 193–204 (1998b).Google Scholar
  14. Bastioli C.: Global status of the production of biobased packaging materials.Starch-Starke 53, 351–355 (2001).CrossRefGoogle Scholar
  15. Bastioli C., Ceruttia.,Guanella I., Romano G.C., Tosin M.: Physical state and biodegradation behavior of starch-polycaprolactone systeme.J.Environ.Polym.Degradat. 3, 81–95 (1995a).CrossRefGoogle Scholar
  16. Bastioli C., Degliinnocenti F., Guanella I., Romano G.: Compostable films of Mater-Bi z-grades.J.Macromol.Sci.Pure Appl. Chem. A32, 839–842 (1995b).Google Scholar
  17. Bentley P.A., Kroutil W., Littlechild J.A., Roberts S.M.: Preparation of polyamino acid catalysts for use in Julia asymmetric epoxidation.Chirality 9, 198–202 (1997).CrossRefGoogle Scholar
  18. Bledzki A.K., Reihmane S., Gassan J.: Properties and modification methods for vegetable fibers for natural fiber composites.J.Appl. Polym.Sci. 59, 1329–1336 (1996).CrossRefGoogle Scholar
  19. Boyer J.N.: Aerobic and anaerobic degradation and mineralization of14C-chitin by water column and sediment inocula of the York-river-estuary.Appl.Environ.Microbiol. 60, 174–179 (1994).PubMedGoogle Scholar
  20. Breslin V.T., Swanson R.L.: Deterioration of starch-plastic composites in the environment.J.Air Waste Manag.Assoc. 43, 325–335 (1993).Google Scholar
  21. Buchanan C.M., Gardner R.M., Komarek R.J.: Aerobic biodegradation of cellulose acetate.J.Appl.Polym.Sci. 47, 1709–1719 (1993).CrossRefGoogle Scholar
  22. Burgesscassler A., Imam S.H., Gould J.M.: High-molecular-weight amylase activities from bacteria degrading starch-plastic films.Appl.Environ.Microbiol. 57, 612–614 (1991).Google Scholar
  23. Byrom D.: Polymer synthesis by microorganisms — technology and economics.Trends Biotechnol. 5, 246–250 (1987).CrossRefGoogle Scholar
  24. Cahill E., Scapolo F., Ducatel K., Münker T., Aguado M., Eder P., Leone F., Hernandez H.:The Futures Project Technology Map. EC TECS (Report EUR 19031EN), Brussels 1999.Google Scholar
  25. Calandrelli L., Immirzi B., Malinconico M., Volpe M.G., Oliva A., Della Ragione F.: Preparation and characterization of composites based on biodegradable polymers for “in vivo” application.Polymer 41, 8027–8033 (2000).CrossRefGoogle Scholar
  26. Callum A., Hill S.: Wood plastic composites: strategies for compatibilizing the phases.J.Inst.Wood Sci. 15, 140–146 (2000).Google Scholar
  27. Calmon-Decriaud A., Bellon-Maurel V., Silvestre F.: Standard methods for testing the aerobic biodegradation of polymeric materials. Review and perspectives.Adv.Polym.Sci. 135, 207–226 (1998).CrossRefGoogle Scholar
  28. Chand N., Tiwary R.K., Rohatgi P.K.: Resource structure properties of natural cellulosic fibers — an annotated bibliography.J.Mater.Sci. 23, 381–387 (1988).CrossRefGoogle Scholar
  29. Cho S., Dreher M.L. (Eds):Handbook of Dietary Fiber. Food Science and Technology, Vol. 113. Marcel Dekker, New York 2001.Google Scholar
  30. Choi J.I., Lee S.Y.: Process analysis and economic evaluation for poly(3-hydroxybutyrate) production by fermentation.Bioproc.Eng. 17, 335–342 (1997).CrossRefGoogle Scholar
  31. Clarkson W.W., Xiao W.: Bench-scale anaerobic bioconversion of newsprint and office paper.Water Sci.Technol. 41, 93–100 (2000).PubMedGoogle Scholar
  32. Crescenzi V.: Microbial polysaccharides of applied interest — ongoing research activities in Europe.Biotechnol.Progr. 11, 251–259 (1995).CrossRefGoogle Scholar
  33. De Graaf R.A., Janssen L.: The production of a new partially biodegradable starch plastic by reactive extrusion.Polym.Eng.Sci. 40, 2086–2094 (2000).CrossRefGoogle Scholar
  34. Drumright R.E., Gruber P.R., Henton D.E.: Polylactic acid technology.Adv.Mater. 12, 1841–1846 (2000).CrossRefGoogle Scholar
  35. Du G.C.C., Chen J., Yu J., Lun S.Y.: Feeding strategy of propionic acid for production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) withRalstonia eutropha.Biochem.Eng.J. 8, 103–110 (2001a).CrossRefGoogle Scholar
  36. Du G.C.C., Chen J., Yu J., Lun S.Y.: Centinuous production of poly-3-hydroxybutyrate byRalstonia eutropha in a two-stage culture system.J.Biotechnol. 88, 59–65 (2001b).PubMedCrossRefGoogle Scholar
  37. Duquesne E., Rutot D., Degee P., Dubois P.: Synthesis and characterization of compatibilized poly(ε-caprolactone)/granular starch composites.Macromol.Symp. 175, 33–43 (2001).CrossRefGoogle Scholar
  38. Edgar K.J., Buchanan C.M., Debenham J.S., Rundquist P.A., Seiler B.D., Shelton M.C., Tindall D.: Advances in cellulose ester performance and application.Progr.Polym.Sci. 26, 1605–1688 (2001).CrossRefGoogle Scholar
  39. Felse P.A., Panda T.: Production of microbial chitinases — a revisit.Bioproc.Eng. 23, 127–134 (2000).CrossRefGoogle Scholar
  40. Finch C.A. (Ed.):Polyvinyl Alcohol — Developments. J. Wiley, New York 1992.Google Scholar
  41. Flach J., Pilet P.E., Jolles P.: What’s new in chitinase research?Experientia 48, 701–716 (1992).PubMedCrossRefGoogle Scholar
  42. Fringant C., Rinaudo M., Gontard N., Guilbert S., Derradji H.: A biogradable starch based coating to waterproof hydrophilic materials.Starch-Starke 50, 292–296 (1998).CrossRefGoogle Scholar
  43. Gartiser S., Wallrabenstein M., Stiene G.: Assessment of several test methods for the determination of the anaerobic biodegradability of polymers.J.Environ.Polym.Degrad. 6, 159–173 (1998).CrossRefGoogle Scholar
  44. George E.R., Sullivan T.M., Park E.H.: Thermoplastic starch blends with a poly(ethylene-co-vinyl alcohol) — processability and physical properties.Polym.Eng.Sci. 34, 17–23 (1994).CrossRefGoogle Scholar
  45. George J., Sreekala M.S., Thomas S.: A review on interface modification and characterization of natural fiber reinforced plastic composites.Polym.Eng.Sci. 41, 1471–1485 (2001).CrossRefGoogle Scholar
  46. Gerngross T.U., Slater S.C.: Can biotechnology move us toward a sustainable society?Nature Biotechnol. 17, 541–544 (1999).CrossRefGoogle Scholar
  47. Giavasis I., Harvey L.M., McNeil B.: Gellan gum.Crit.Rev.Biotechnol. 20, 177–211 (2000).PubMedCrossRefGoogle Scholar
  48. Glenn G.M., Hsu J.: Compression-formed starch-based plastic.Ind.Crops Prod. 7, 37–44 (1997).CrossRefGoogle Scholar
  49. Glenn G.M., Orts W.J.: Properties of starch-based foam formed by compression/explosion processing.Ind.Crops Prod. 13, 135–143 (2001).CrossRefGoogle Scholar
  50. Glenn G.M., Orts W.J., Nobes G.A.R.: Starch, fiber and CaCO3 effects on the physical properties of foams made by a baking process.Ind.Crops Prod. 14, 201–212 (2001).CrossRefGoogle Scholar
  51. Gomes E., Iembo T., da Silva R.: Production, characterization and properties of polysaccharide depolymerizing enzymes from a strain ofCurvularia inaequalis.Folia Microbiol. 46, 303–308 (2001).CrossRefGoogle Scholar
  52. Gooday G.W.: The ecology of chitin degradation.Adv.Microb.Ecol. 11, 387–430 (1990).Google Scholar
  53. Goosen M.F.A. (Ed.):Applications of Chitin and Chitosan. Technomic, Lancaster 1997.Google Scholar
  54. Gough J.E., Christian P., Scotchford C.A., Rudd C.D., Jones I.A.: Synthesis, degradation, andin vitro cell responses of sodium phosphate glasses for craniofacial bone repair.J.Biomed.Mat.Res. 59, 481–489 (2002).CrossRefGoogle Scholar
  55. Gross R.A., Kalra B.: Biodegradable polymers for the environment.Science 297, 803–807 (2002).PubMedCrossRefGoogle Scholar
  56. Hanzlíková A., Jandera A.: Chitinase and changes of microbial community in soil.Folia Microbiol. 38, 159–160 (1993).CrossRefGoogle Scholar
  57. Hashimoto M., Ikegami T., Seino S., Ohuchi N., Fukada H., Sugiyama J., Shirakawa M., Watanabe T.: Expression and characterization of the chitin-binding domain of chitinase A1 fromBacillus circulans WL-12.J.Bacteriol. 182, 3045–3054 (2000).PubMedCrossRefGoogle Scholar
  58. Hashimoto W., Momma K., Miki H., Mishima Y., Kobayashi E., Miyake O., Kawai S., Nankai H., Mikami B., Murata K.: Enzymatic and genetic bases on assimilation, depolymerization, and transport of heteropolysaccharides in bacteria.J.Biosci.Bioeng. 87, 123–136 (1999).PubMedCrossRefGoogle Scholar
  59. Hattori K., Tomita N., Yoshikawa T., Takakura Y.: Prospects for bone fixation — development of new cerclage fixation techniques.Mat.Sci.Eng. 17, 27–32 (2001).CrossRefGoogle Scholar
  60. Hebeish A., Elalfy E., Bayazeed A.: Synthesis of vinyl polymer-starch composites to serve as size base materials.Starch-Starke 40, 191–196 (1988).CrossRefGoogle Scholar
  61. Hebeish A., Elzairy M.R., Elrafie M.H., Higazy A., Elsisy F.: Poly(acrylic acid)-starch composite as a substitute for sodium alginate in printing cotton fabrics with reactive dyes.Starch-Starke 43, 98–102 (1991).CrossRefGoogle Scholar
  62. Hebeish A., Elrafie M.H., Higazy A., Ramadan M.A.: Poly(acrylic acid)-starch composites — a key for improving sizability and desizability of starch from cotton textiles.Starch-Starke 44, 101–107 (1992).CrossRefGoogle Scholar
  63. Hebeish A., Elrafie M.H., Higazy A., Ramadan M.: Synthesis, characterization and properties of polyacrylamide-starch composites.Starch-Starke 48, 175–179 (1996).CrossRefGoogle Scholar
  64. Hebeish A., Waly A., Elrafie M.H., El Sheikh M.A.: Synthesis and characterization of new polymeric materials based on water soluble starch composites.Abstr.Am.Chem.Soc. 213, 32 (1997).Google Scholar
  65. Herrmann A.S., Nickel J., Riedel U.: Construction materials based upon biologically renewable resources — from components to finished parts.Polyin.Degrad.Stabil. 59, 251–261 (1998).CrossRefGoogle Scholar
  66. Holan Z., Beran K., Miler I.: Preparation of zymosan from yeast-cell walls.Folia Microbiol. 25, 501–504 (1980).CrossRefGoogle Scholar
  67. Huang M.H., Shih Y.P., Liu S.M.: Biodegradation of polyvinyl alcohol byPhanerochaete chrysosporium after pretreatment with Fenton’s reagent.J.Environ.Sci.Health 37, 29–41 (2002).CrossRefGoogle Scholar
  68. Hutmacher D.W., Goh J.C., Teoh S.H.: An introduction to biodegradable materials for tissue engineering applications.Ann.Acad.Med.Singapore 30, 183–191 (2001).PubMedGoogle Scholar
  69. Imam S.H., Gould J.M., Gordon S.H., Kinney M.P., Ramsey A.M., Tosteson T.R.: Fate of starch-containing plastic films exposed in aquatic habitats.Curr.Microbiol. 25, 1–8 (1992).CrossRefGoogle Scholar
  70. Imam S.H., Gordon S.H., Thompson A.R., Harryokuru R.E., Greene R.V.: The use of CP/MAS13C0NMR for evaluating starch degradation in injection-molded starch-plastic composites.Biotechnol.Techn. 7, 791–794 (1993).CrossRefGoogle Scholar
  71. Ishiaku U.S., Pang K.W., Lee W.S., Ishak Z.A.M.: Mechanical properties and enzymic degradation of thermoplastic and granular sago starch-filled poly(ε-caprolactone).Europ.Polym.J. 38, 393–401 (2002).CrossRefGoogle Scholar
  72. Itoh Y., Kawase T., Nikaidou N., Fukada H., Mitsutomi M., Watanabe T., Itoh Y.: Functional analysis of the chitin-binding domain of a family 19 chitinase fromStreptomyces griseus HUT6037: substrate-binding affinity and cis-dominant increase of antifungal function.Biosci.Biotechnol.Biochem. 66, 1084–1092 (2002).PubMedCrossRefGoogle Scholar
  73. Jendrossek D., Schirmer A., Schlegel H.G: Biodegradation of polyhydroxy-alkanoic acids.Appl.Microbiol.Biotechnol. 46, 451–463 (1996).PubMedCrossRefGoogle Scholar
  74. Jenkins D.W., Hudson S.M.: Review of vinyl graft copolymerization featuring recent advances toward controlled radical-based reactions and illustrated with chitin/chitosan trunk polymers.Chem.Rev. 101, 3245–3273 (2001).PubMedCrossRefGoogle Scholar
  75. Jeon Y.J., Shahidi F., Kim S.K.: Preparation of chitin and chitosan oligomers and their applications in physiological functional foods.Food Rev.Internat. 16, 159–176 (2000).CrossRefGoogle Scholar
  76. Jeong Y.I., Nah J.W., Na H.K., Na K., Kim I.S., Cho C.S., Kim S.H.: Self-assembling nanospheres of hydrophobized pullulans in water.Drug Dev.Ind.Pharm. 25, 917–927 (1999).PubMedCrossRefGoogle Scholar
  77. Jian Y., Yingtao Si B., Wan K.R., Wong C.: Kinetic modeling of inhibition and utilization of mixed volatile fatty acids in the formation of polyhydroxyalkanoates byRalstonia eutropha.Proc.Biochem. 37, 731–738 (2002).CrossRefGoogle Scholar
  78. Kanzawa Y., Harada T., Koreda A., Harada A.: Curdlan gel formed by neutralizing its alkaline solution.Agric.Biol.Chem. 51, 1839–1843 (1987).Google Scholar
  79. Karinen P., Bergelin R.: β-Glucan-enriched alimentary fiber. US Pat. 5 183 677 (1993).Google Scholar
  80. Karjomaa S., Suortti T., Lempiainen R., Selin J.F., Itavaara M.: Microbial degradation of poly-(l-lactic acid) oligomers.Polym.Degrad.Stabil. 59, 333–336 (1998).CrossRefGoogle Scholar
  81. Karthikeyan R.S., Rakshit S.K., Baradarajan A.: Optimization of batch fermentation conditions for dextran production.Bioproc.Eng. 15, 247–251 (1996).CrossRefGoogle Scholar
  82. Kasapis S.: Phase separated, glassy and rubbery states of gellan gum in mixtures with food biopolymers and co-solutes.Internat.J.Food Sci.Technol. 30, 693–710 (1995).Google Scholar
  83. Katoh T., Yuguchi D., Yoshii H., Shi H.D., Shimizu K.: Dynamics and modeling on fermentative production of poly (β-hydroxy-butyric acid) from sugarsvia lactate by a mixed culture ofLactobacillus delbrueckii andAlcaligenes eutrophus.J.Biotechnol. 67, 113–134 (1999).PubMedCrossRefGoogle Scholar
  84. Kawai F.: Breakdown of plastics and polymers by microorganisms.Adv.Biochem.Eng.Biotechnol. 52, 151–194 (1995).PubMedGoogle Scholar
  85. Ke T.Y., Sun X.Z.: Physical properties of poly(lactic acid) and starch composites with various blending ratios.Cereal Chem. 77, 761–768 (2000).CrossRefGoogle Scholar
  86. Kennedy E.M., Sundquist D.:Biopolymers: Making Materials Nature’s Way. US Congress. Office of Technology Assessment (ISBN 0-16-042098-9), Washington (DC) 1993.Google Scholar
  87. Kimura T., Ihara N., Ishida Y., Saito Y., Shimizu N.: Hydrolysis characteristics of biodegradable plastic (poly-lactic acid).J.Japan.Soc.Food Sci.Technol. 49, 598–604 (2002).Google Scholar
  88. Kofroňová O., Ptáčkova L., Chaloupka J.: Poly(3-hydroxybutyrate) granules ofBacillus megaterium.Folia Microbiol. 39, 166–167 (1994).CrossRefGoogle Scholar
  89. Kolarova N., Augustín J.: Production of polysaccharide hydrolases in the genusRhizopus.Folia Microbiol. 46, 223–226 (2001).CrossRefGoogle Scholar
  90. Kolstad J.J.: Crystallization kinetics of poly(l-lactide-co-meso-lactide).J.Appl.Polym.Sci. 62, 1079–1091 (1996).CrossRefGoogle Scholar
  91. Kopečný J., Hodrová B.: Chitinolytic enzymes produced by ovine rumen bacteria.Folia Microbiol. 45, 465–468 (2000).CrossRefGoogle Scholar
  92. Kumar M.N.V.R.: A review of chitin and chitosan applications.React.Funct.Polym. 46, 1–27 (2000).CrossRefGoogle Scholar
  93. Kumar M.N.V.R., Kumar N., Domb A.J., Arora M.: Pharmaceutical polymeric controlled drug delivery systems.Adv.Polym.Sci. 160, 45–117 (2002).CrossRefGoogle Scholar
  94. Kwon S., Yoo I.K., Lee W.G., Chang H.N., Chang Y.K.: High-rate continuous production of lactic acid byLactobacillus rhamnosus in a two-stage membrane cell-recycle bioreactor.Biotechnol.Bioeng. 73, 25–34 (2001).PubMedCrossRefGoogle Scholar
  95. Lednická D., Mergaert J., Cnockaert M.C., Swings J.: Isolation and identification of cellulolytic bacteria involved in the degradation of natural cellulosic fibres.Syst.Appl.Microbiol. 23, 292–299 (2000).PubMedGoogle Scholar
  96. Lee S.Y.: Plastic bacteria? Progress and prospects for polyhydroxyalkanoate production in bacteria.Trends Biotechnol. 14, 431–438 (1996).CrossRefGoogle Scholar
  97. Lee J.H., Park Y.H.: Optimal production of curdlan byAgrobacterium sp. with feedback inferential control of optimal pH profile.Biotechnol.Lett. 23, 525–530 (2001).CrossRefGoogle Scholar
  98. Lenz R.W.:JTEC Monograph on Biodegradable Polymers and Plastics in Japan, PB95-199071. National Technical Information Service of the US Department of Commerce, Sprinfield (USA) 1995.Google Scholar
  99. Leschine S.B.: Cellulose degradation in anaerobic environments.Ann.Rev.Microbiol. 49, 399–426 (1995).CrossRefGoogle Scholar
  100. Lindblad M.S., Liu Y., Albertson A.C., Ranucci E., Karlson S.: Polymers from renewable resources.Adv.Polym.Sci. 157, 139–161 (2002).CrossRefGoogle Scholar
  101. Lodha P., Netravali A.N.: Characterization of interfacial and mechanical properties of “green” composites with soy protein isolate and ramie fiber.J.Mat.Sci. 37, 3657–3665 (2002).CrossRefGoogle Scholar
  102. Lopezllorca L.V., Valiente M.F.C.: Study of biodegradation of starch-plastic films in soil using scanning electron microscopy.Micron 24, 457–463 (1993).CrossRefGoogle Scholar
  103. Lorcks J.: Properties and applications of compostable starch-based plastic material.Polym.Degrad.Stabil. 59 (special issue), 145–152 (1998).CrossRefGoogle Scholar
  104. Lunt J.: Large-scale production, properties and commercial applications of polylactic acid polymers.Polym.Degradat.Stabil. 59 (special issue), 245–249 (1998).CrossRefGoogle Scholar
  105. Manna B., Gambhir A., Ghosh P.: Production and rheological characteristics of the microbial polysaccharide gellan.Lett.Appl.Microbiol. 23, 141–145 (1996).Google Scholar
  106. Mark H.F., Stafford W.G. (Eds):Collected Papers of Wallace Hume Carothers on High Polymeric Substances. Interscience, New York 1940.Google Scholar
  107. Martin O., Schwach E., Averous L., Couturier Y.: Properties of biodegradable multilayer films based on plasticized wheat starch.Starch-Starke 53, 372–380 (2001).CrossRefGoogle Scholar
  108. Melzoch K., Votruba J., Schwippel J., Rychtera M., Hábová V.: Lactic acid production in a continuous culture using lignocellulosic hydrolysate as a substrate. Identification of a physiological model.Folia Microbiol. 41, 211–215 (1996).CrossRefGoogle Scholar
  109. Miladinov V.D., Hanna M.A.: Temperatures and ethanol effects on the properties of extruded modified starch.Ind.Crops Prod. 13, 21–28 (2001).CrossRefGoogle Scholar
  110. Mohanty A.K., Misra M., Hinrichsen G.: Biofibres, biodegradable polymers and biocomposites: an overview.Macromol.Mater.Engin. 276, 1–24 (2000).CrossRefGoogle Scholar
  111. Murano E.: Natural gelling polysaccharides: indispensable partners in bioencapsulation technology.Minerva Biotecnol. 12, 213–222 (2000).Google Scholar
  112. Muzzarelli R.A.A., Mattioli-Belmonte M., Miliani M., Muzzarelli C., Gabbanelli F., Biagini G.:In vivo andin vitro biodegradation of oxychitin-chitosan and oxypullulan-chitosan complexes.Carbohydr.Polym. 48, 15–21 (2002).CrossRefGoogle Scholar
  113. Muzzarelli R.A.A., Peter M.G. (Eds):Chitin Handbook. Atec, Grottammare (Italy) 1997.Google Scholar
  114. Nakata M., Kawaguchi T., Kodaky Y., Kono A.: Characterization of curdlan in aqueous sodium hydroxide.Polym.Sci. 39, 1475–1481 (1998).Google Scholar
  115. Nfiura N.N., Ohno N., Adachi Y., Yadomae T.: Characterization of sodium hypochlorite degradation of β-glucan in relation to its metabolismin vivo.Chem.Pharm.Bull.(Japan) 44, 2137–2141 (1996).Google Scholar
  116. Nitz H., Semke H., Landers R., Mulhaupt R.: Reactive extrusion of polycaprolactone compounds containing wood flour and lignin.J.Appl.Polym.Sci. 81, 1972–1984 (2001).CrossRefGoogle Scholar
  117. Okada M.: Chemical syntheses of biodegradable polymers.Progr.Polym.Sci. 27, 87–133 (2002).CrossRefGoogle Scholar
  118. Osumi M.S.: The ultrastructure of yeast: cell wall structure and formation.Micron 29, 207–233 (1998).PubMedCrossRefGoogle Scholar
  119. Otaigbe J.U., Adams D.O.: Bioabsorbable soy protein plastic composites: effect of polyphosphate fillers on water absorption and mechanical properties.J.Environ.Polym.Degrad. 5, 199–208 (1997).Google Scholar
  120. Otaigbe J.U., Goel H., Babcock T., Jane J.: Processability and properties of biodegradable plastics made from agricultural biopolymers.J.Elastomers Plastics 31, 56–71 (1999).Google Scholar
  121. Paetau I., Chen C.Z., Jane J.: Biodegradable plastic made from soybean products. Part I. Effect of preparation and processing on mechanical properties and water absorption.Ind.Eng.Chem.Res. 33, 1821–1827 (1994a).CrossRefGoogle Scholar
  122. Paetau I., Chen C.Z., Jane J.: Biodegradable plastic made from soybean products. Part II. Effect of cross-linking and incorporation of cellulose on the mechanical properties and water absorption.J.Environ.Biodegrad.Polym. 2, 211–217 (1994b).CrossRefGoogle Scholar
  123. Pagga U., Beimborn D.B., Boelens J., De-Wilde B.: Determination of the aerobic biodegradability of polymeric material in a laboratory controlled composting test.Chemosphere 31, 4475–4487 (1995).PubMedCrossRefGoogle Scholar
  124. Pagga U., Schafer A., Muller R.J., Pantke M.: Determination of the aerobic biodegradability of polymeric material in aquatic batch tests.Chemosphere 42, 319–331 (2001).PubMedCrossRefGoogle Scholar
  125. Pal S., Manna A., Paul A.K.: Nutritional and cultural conditions for production of poly-3-hydroxybutyric acid byAzotobacter chroococcum.Folia Microbiol. 43, 177–181 (1998).CrossRefGoogle Scholar
  126. Park S.K., Hettiarachchy N.S.: Physical and mechanical properties of soy protein-based plastic foams.J.Am.Oil Chem.Soc. 76, 1201–1205 (1999).CrossRefGoogle Scholar
  127. Park H., Park K.: Hydrogels in bioapplications, pp. 2–10 inHydrogels and Biodegradable Polymers for Bioapplications. ACS Symp. Ser. 627 (1996).Google Scholar
  128. Park E.H., George E.R., Flammino A.: Thermoplastic starch blends with polyvinyl alcohol — processability, physical properties, and biodegradability.Abstr.Pap.Am.Oil Chem.Soc. 206, 76 (1993).Google Scholar
  129. Park S.K., Hettiarachchy N.S., Were L.: Degradation behavior of soy protein-wheat gluten films in simulated soil conditions.J.Agric.Food Chem. 48, 3027–3031 (2000).PubMedCrossRefGoogle Scholar
  130. Parshad J., Suneja S., Kukreja K., Lakshminarayana K.: Poly-3-hydroxybutyrate production byAzotobacter chroococcum.Folia Microbiol. 46, 315–320 (2001).CrossRefGoogle Scholar
  131. Poirier Y.: Production of new polymeric compounds in plants.Curr.Opin.Biotechnol. 10, 181–185 (1999).PubMedCrossRefGoogle Scholar
  132. Poirier Y.: Polyhydroxyalkanoate synthesis in plants as a tool for biotechnology and basic studies of lipid metabolism.Progr.Lipids Res. 41, 131–155 (2002).CrossRefGoogle Scholar
  133. Pollock T.J.: Gellan-related polysaccharides and the genusSphingomonas.J.Gen.Microbiol. 139, 1939–1945 (1993).Google Scholar
  134. Potter R.C., Fisher P.A., Hash S., Kirk R., Neidt J.D.: Method for concentrating β-glucan. US Pat. 6 323 338 (1999).Google Scholar
  135. Poutanen K., Forssell P.: Modification of starch properties with plasticizers.Trends Polym.Sci. 4, 128–132 (1996).Google Scholar
  136. Ramakrishna S., Mazer J., Wintermantel E., Leong K.W.: Biomedical application of polymer composite materials: a review.Composite Sci.Technol. 61, 1189–1224 (2001).CrossRefGoogle Scholar
  137. Rao M.S., Munoz J.H., Stevens W.F.: Critical factors in chitin production by fermentation of shrimp biowaste.Appl.Microbiol. Biotechnol. 54, 808–813 (2000).PubMedCrossRefGoogle Scholar
  138. Rathke T.D., Hudson S.M.: Review of chitin and chitosan as fiber and film formers.J.Macromol.Sci. C34, 375–437 (1994).Google Scholar
  139. Rhim J.W., Weller C.L.: Properties of formaldehyde adsorbed soy protein isolate films.Food Sci.Biotechnol. 9, 228–233 (2000).Google Scholar
  140. Riedel U., Nickel J.: Structural materials from renewable resources (biocomposites).Materialwiss.Werkstofftech. 32, 493–498 (2001).CrossRefGoogle Scholar
  141. Robyt F.:Essential of Carbohydrate Chemistry. Springer-Verlag, Berlin 1998.Google Scholar
  142. Roy S., Leclerck P., Auger F., Soucy G., Moresoli C., Côté L., Potvin D., Beaulieu C., Brzezinski R.: A novel two-phase composting process using shrimp shells as an amendment to partly composted biomass.Compost Sci.Util. 5, 52–64 (1997).Google Scholar
  143. Sakai K., Yamauchi T., Nakasu F., Ohe T.: Biodegradation of cellulose acetate byNeisseria sicca.Biosci.Biotechnol.Biochem. 60, 1617–1622 (1996).PubMedGoogle Scholar
  144. Salyers A.A., Reeves A., Delia J.: Solving the problem of how to eat something as big as yourself: diverse bacterial strategies for degrading polysaccharides.J.Ind.Microbiol.Biotechnol. 17, 470–476 (1996).CrossRefGoogle Scholar
  145. Sanchez J.G., Tsuchii A., Tokiwa Y.: Degradation of polycaprolactone at 50 °C by a thermotolerantAspergillus sp.Biotechnol.Lett. 22, 849–853 (2000).CrossRefGoogle Scholar
  146. Schlechter M.:Biodegradable Polymer (Report P-175). Business Communications Company, Norwalk (USA) 2001.Google Scholar
  147. Schrempe H.: Recognition and degradation of chitin by streptomycetes.Antonie van Leeuwenhoek 79, 285–289 (2001).CrossRefGoogle Scholar
  148. Schroter E.: Nature from start to finish.Kunststoffe-Plast Europe 88, 892–893 (1998).Google Scholar
  149. Schwarz W.H.: The cellulosome and cellulose degradation by anaerobic bacteria.Appl.Microbiol.Biotechnol. 56, 634–649 (2001).PubMedCrossRefGoogle Scholar
  150. Seviour R.J., Stasinopoulos S.J., Auer D.P.F., Gibbs P.A.: Production of pullulan and other exopolysaccharides by filamentous fungi.Crit.Rev.Biotechnol. 12, 279–298 (1992).CrossRefGoogle Scholar
  151. Shen Y.Q., Sun W.L., Zhu K.J., Shen Z.Q.: Regulation of biodegradability and drug release behavior of aliphatic polyesters by blending.J.Biomed.Mater.Res. 50, 528–535 (2000).PubMedCrossRefGoogle Scholar
  152. Shih F.F.: Edible films from rice protein concentrate and pullulan.Cereal Chem. 73, 406–409 (1996).Google Scholar
  153. Shimao M.: Biodegradation of plastics.Curr.Opin.Biotechnol. 12, 242–247 (2001).PubMedCrossRefGoogle Scholar
  154. Shin C.H., Kim Y.J., Kim B.S., Shin B.Y.: Mechanical properties and biodegradability of PCL/TPS blends.Polymer-Korea 24, 48–57 (2000).Google Scholar
  155. Shiraishi N., Yoshioka M.: Biodegradable plastics from cellulose.Mol.Cryst.Liq.Cryst. 353, 59–73 (2000).CrossRefGoogle Scholar
  156. Shogren R.L., Lawton J.W., Doane W.M., Tiefenbacher K.F.: Structure and morphology of baked starch flaks.Polymer 39, 6649–6655 (1998).CrossRefGoogle Scholar
  157. Simon J., Muller H.P., Koch R., Muller V.: Thermoplastic and biodegradable polymers of celulose.Polym.Degrad.Stabil. 59, 107–115 (1998).CrossRefGoogle Scholar
  158. Šimůnek J., Hodrová B., Bartoňová H., Kopečný J.: Chitinolytic bacteria of the mammal digestive tract.Folia Microbiol. 46, 76–78 (2001).CrossRefGoogle Scholar
  159. Šimůnek J., Kopečný J., Hodrová B., Bartoňová H.: Identification and characterization ofClostridium paraputrificum, a chitinolytic bacterium of human digestive tract.Folia Microbiol. 47, 559–564 (2002).CrossRefGoogle Scholar
  160. Singla A.K., Chawla M.: Chitosan: some pharmaceutical and biological aspects — an update.J.Pharm.Pharmacol. 53, 1047–1067 (2001).PubMedCrossRefGoogle Scholar
  161. Spence K.E., Allen A.L., Wang S., Jane J.: Soil and marine biodegradation of protein-starch plastics.Am.Chem.Soc.Symp.Ser. 627, 149–158 (1996).Google Scholar
  162. Spicer E.J.F., Goldenthal E.I., Ikeda T.: A toxicological assssment of curdlan.Food Chem.Toxicol. 37, 455–479 (1999).PubMedCrossRefGoogle Scholar
  163. Steinbüchel A., de Baets S., Vandamme E.J. (Eds):Biopolymers. Vol. 6. Polysaccharides from Eukaryote. Wiley-VCH, Berlin 2002.Google Scholar
  164. Struszczyk M.H.: Chitin and chitosan — part I. Properties and production.Polimery-W 47, 316–325 (2002a).Google Scholar
  165. Struszczyk M.H.: Chitin and chitosan — part II. Applications of chitosan.Polimery-W 47, 396–403 (2002b).Google Scholar
  166. Struszczyk M.H.: Chitin and chitosan — part III. Some aspects of biodegradation and bioactivity.Polimery-W 47, 619–629 (2002c).Google Scholar
  167. Suchardová O., Volfová O., Krumphanzl V.: Degradation of cellulose by thermophilic bacteria.Folia Microbiol. 31, 1–7 (1986).CrossRefGoogle Scholar
  168. Sue H.J., Wang S., Jane J.L.: Morphology and mechanical behavior of engineering soy plastics.Polymer 38, 5035–5040 (1997).CrossRefGoogle Scholar
  169. Thakur P.S., Borah B., Baruah S.D., Nigam J.N.: Growth-associated production of poly-3-hydroxybutyrate byBacillus mycoides.Folia Microbiol. 46, 488–494 (2001).CrossRefGoogle Scholar
  170. Tiefenbacher K.F.: Starch-based foamed materials — use and degradation properties.J.Macromol.Sci.Pure Appl.Chem. A30, 727–731 (1993).Google Scholar
  171. Tohyama A.M., Patarinska T., Qiang Z., Shimizu K.: Modeling of the mixed culture and periodic control for PHB production.Biochem.Eng.J. 9, 1–17 (2002).Google Scholar
  172. Varadarajan S., Miller D.: Catalytic upgrading of fermentation-derived organic acids.J.Biotechnol.Progr. 15, 845–854 (1999).CrossRefGoogle Scholar
  173. Vikhoreva G.A., Gorbacheva I.N., Galbraikh L.S.: Synthesis and properties of water-soluble derivatives of chitin. A review.Fibre Chem. 31, 274–278 (1999).CrossRefGoogle Scholar
  174. Vikman M., Itavaara M., Poutanen K.: Biodegradation of starch-based materials.J.Macromol.Sci.Pure Appl.Chem. A32, 863–866 (1995).Google Scholar
  175. Vikman M., Hulleman S.H.D., Van der Zee M., Myllarinen P., Feil H.: Morphology and enzymatic degradation of thermoplastic starch-polycaprolactone blends.J.Appl.Polym.Sci. 74, 2594–2604 (1999).CrossRefGoogle Scholar
  176. Wang L., Shogren R.L., Carriere C.: Preparation and properties of thermoplastic starch-polyester laminate sheets by coextrusion.Polym.Eng.Sci. 40, 499–506 (2000).CrossRefGoogle Scholar
  177. Weterings R., Kuijper J., Smeets E.:81 Options: Technology for Sustainable Development. Final Report EC of the Environment-Oriented Technology, Foresight Study. Apeldoorn (The Netherlands) 1997.Google Scholar
  178. Wiedmann W., Strobel E.: Compounding of thermoplastic starch with twin-screw extruders.Starch-Starke 43, 138–145 (1991).CrossRefGoogle Scholar
  179. Witkowska D., Maj A.: Production of lytic enzymes byTrichoderma spp. and their effect on the growth of phytopathogenic fungi.Folia Microbiol. 47, 279–284 (2002).CrossRefGoogle Scholar
  180. Wong H.H., Lee S.Y.: Poly-(3-hydroxybutyrate) production from whey by high-density cultivation of recombinantEscherichia coli.Appl.Microbiol.Biotechnol. 50, 30–33 (1998).PubMedCrossRefGoogle Scholar
  181. Wool R.P., Raghavan D., Wagner G.C., Billieux S.: Biodegradation dynamics of polymer-starch composites.J.Appl.Polym.Sci. 77, 1643–1657 (2000).CrossRefGoogle Scholar
  182. Xu S.Y., Chen X.F., Sun D.W.: Preservation of kiwi fruit coated with an edible film at ambient temperature.J.Food Eng. 50, 211–216 (2001).CrossRefGoogle Scholar
  183. Yang A.L., Wu R.J., Zhu P.F.: Thermal analysis and miscibility of chitin/polycaprolactone blends.J.Appl.Polym.Sci. 81, 3117–3123 (2001).CrossRefGoogle Scholar
  184. Yu J., Si Y.T.: A dynamic study and modeling of the formation of polyhydroxyalkanoates combined with treatment of high strength wastewater.Environ.Sci.Technol. 35, 3584–3588 (2001).PubMedCrossRefGoogle Scholar
  185. Yu J., Yingtao S.I., Wan K.R., Wong C.: Kinetics modeling of inhibition and utilization of mixed volatile fatty acids in the formation of polyhydroxyalkanoates byRalstonia eutropha.Proc.Biochem. 37, 731–738 (2002).CrossRefGoogle Scholar
  186. Zasypkin D.V., Braudo E.E., Tolstoguzov V.B.: Multicomponent biopolymer gels.Food Hydrocolloids 11, 159–170 (1997).CrossRefGoogle Scholar
  187. Zhang Y.Q., Li J., Chen A.M., Huang Y.: Biodegradation of cellulose derivative-polycaprolactone blends.Cellulose Chem.Technol. 34, 51–62 (2000).Google Scholar
  188. Zhong Z.K., Sun X.Z.S.: Properties of soy protein isolate/polycaprolactone blends compatibilized by methylene diphenyl diisocyanate.Polymer 42, 6961–6969 (2001).CrossRefGoogle Scholar

Copyright information

© Institute of Microbiology, Academy of Sciences of the Czech Republic 2003

Authors and Affiliations

  • M. Flieger
    • 1
  • M. Kantorová
    • 1
  • A. Prell
    • 1
  • T. Řezanka
    • 1
  • J. Votruba
    • 1
  1. 1.Institute of MicrobiologyAcademy of Sciences of the Czech RepublicPragueCzechia

Personalised recommendations