Biotechnology and Bioprocess Engineering

, Volume 12, Issue 4, pp 417–423 | Cite as

Modeling of poly(3-hydroxybutyrate) production by high cell density fed-batch culture of Ralstonia eutropha

  • Longan Shang
  • Dai Di Fan
  • Moon Il Kim
  • Jin-dal-rae Choi
  • Ho Nam Chang


High cell density culturing has been conducted for the production of poly(3-hydroxybutyrate) fed-batch cultures ofRalstonia eutropha with phosphate limitation. It was found that a high glucose concentration inhibited the synthesis of P(3HB) in the high cell density culture ofR. eutropha. Although a low glucose concentration can trigger the synthesis of P(3HB) in a manner similar to that of phosphate limitation, it also limited both the P(3HB) synthesis and the cell growth, and led to a low P(3HB) productivity because glucose is the sole carbon source in this reaction. An unstructured model was proposed for predicting the cell growth and P(3HB) synthesis in high cell density cultures ofR. eutropha, where the phosphate concentration played a key role in the accumulation of P(3HB) and in cell growth. Good agreements were found between the experimental data and model predictions. The results of simulation showed that the final P(3HB) concentration would decrease more than 25% when the glucose was concentration increased to 40 g/L, and indicated that the optimal glucose concentration for P(3HB) production by high cell density cultures ofR. eutropha was around 9 g/L.


fed-batch culture high cell density culture modeling production of poly(3-hydroxybutyrate) Ralstonia eutropha 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Leaf, T. A. and F. Srienc (1998) Metabolic modeling of polyhydroxybutyrate biosynthesis.Biotechnol. Bioeng. 57: 557–570.CrossRefGoogle Scholar
  2. 2.
    Yoo, S. and W. S. Kim (1994) Cybernetic model for synthesis of poly-β-hydroxybutyric acid inAlcaligenes eutrophus.Biotechnol. Bioeng. 43: 1043–1051.CrossRefGoogle Scholar
  3. 3.
    Belfares, L., M. Perrier, B. A. Ramsay, J. A. Ramsay, M. Jolicoeur, and C. Chavarie (1995) Multi-inhibition kinetic model for the growth ofAlcaligenes eutrophus.Can. J. Microbiol. 41: 249–256.CrossRefGoogle Scholar
  4. 4.
    Mulchandani, A., J. H. T. Luong, and C. Groom (1989) Substrate inhibition kinetics for microbial growth and synthesis of poly-β-hydroxybutyric acid byAlcaligenes eutrophus ATCC 17697.Appl. Microbiol. Biotechnol. 30: 11–17.CrossRefGoogle Scholar
  5. 5.
    Patwardhan, P. R. and A. K. Srivastava (2004) Model-based fed-batch cultivation ofR. eutropha for enhanced biopolymer production.Biochem. Eng. J. 20: 21–28.CrossRefGoogle Scholar
  6. 6.
    Shahhosseini, S. (2004) Simulation and optimization of PHB production in fed-batch culture ofRalstonia eutropha.Process Biochem. 39: 963–969.CrossRefGoogle Scholar
  7. 7.
    Tohyama, M., T. Patarinska, Z. Qiang, and K. Shimizu (2002) Modeling of the mixed culture and periodic control for PHB production.Biochem. Eng. J. 10: 157–173.CrossRefGoogle Scholar
  8. 8.
    Katoh, T., D. Yuguchi, H. Yoshii, H. Shi, and K. Shimizu (1999) Dynamics and modeling on fermentative production of poly(β-hydroxybutyric acid) from sugars via lactate by a mixed culture ofLactobacillu delbrueckii andAlcaligenes eutrophus.J. Biotechnol. 67: 113–134.CrossRefGoogle Scholar
  9. 9.
    Ryu, H. W., K. S. Cho, B. S. Kim, Y. K. Chang, H. N. Chang, and H. J. Shim (1999) Mass production of poly(3-hydroxybutyrate) by fed-batch cultures ofRalstonia eutropha with nitrogen and phosphate limitation.J. Microbiol. Biotechnol. 9: 751–756.Google Scholar
  10. 10.
    Shang, L., M. Jiang, and H. N. Chang (2003) Poly(3-hydroxybutyrate) synthesis in fed-batch culture ofRalstonia eutropha with phosphate limitation under different glucose concentrations.Biotechnol. Lett. 25: 1415–1419.CrossRefGoogle Scholar
  11. 11.
    Dias, J. M., L. S. Serafim, P. C. Lemos, M. A. Reis, and R. Oliveira (2005) Mathematical modelling of a mixed culture cultivation process for the production of polyhydroxybutyrate.Biotechnol. Bioeng. 92: 209–222.CrossRefGoogle Scholar
  12. 12.
    Khanna, S. and A. K. Srivastava (2006) Computer simulated fed-batch cultivation for over production of PHB: A comparison of simultaneous and alternate feeding of carbon and nitrogen.Biochem. Eng. J. 27: 197–203.CrossRefGoogle Scholar
  13. 13.
    Sin, G., A. Guisasola, D. J. W. De Pauw, J. A. Baeza, J. Carrera, and P. A. Vanrolleghem (2005) A new approach for modelling simultaneous storage and growth processes for activated sludge systems under nerobic conditions.Biotechnol. Bioeng. 92: 600–613.CrossRefGoogle Scholar
  14. 14.
    Shang, L., M. Jiang, C. H. Ryu, H. N. Chang, S. H. Cho, and J. W. Lee (2003) Inhibitory effect of carbon dioxide on the fed-batch culture ofRalstonia eutropha: Evaluation by CO2 pulse injection and autogenous CO2 methods.Biotechnol. Bioeng. 83: 312–320.CrossRefGoogle Scholar
  15. 15.
    Lee, J. H., H. C. Lim, and J. Hong (1997) Application of nonsingular transformation to on-line optimal control of poly-β-hydroxybutyrate fermentation.J. Biotechnol. 55: 135–150.CrossRefGoogle Scholar
  16. 16.
    Website of Superprodesigner. http://www.Intelligen. com.Google Scholar
  17. 17.
    Chu, K. H. and E. Y. Kim (2006) Predictive modeling of competitive biosorption equilibrium data.Biotechnol. Bioprocess Eng. 11: 67–71.CrossRefGoogle Scholar
  18. 18.
    Mahadevan, R., A. P. Burgard, I. Famili, S. V. Dien, and C. H. Schilling (2005) Applications of metabolic modeling to drive bioprocess development for the production of value-added chemicals.Biotechnol. Bioprocess Eng. 10: 408–417.CrossRefGoogle Scholar
  19. 19.
    Lee, Y. M., O. Y. Kwon, and K. G. Ryu (2007) General applications of modified Stokes expression for modeling and scale-up of expanded beds.Kor. J. Chem. Eng. 24: 261–264.CrossRefGoogle Scholar
  20. 20.
    Chen, Y., W. Dai, X. Liu, Y. Cheng, and H. Qu (2006) Kinetic modeling for chromatographic separation of cytosine monophosphate and uracil monophosphate.Kor. J. Chem. Eng. 23: 784–788.CrossRefGoogle Scholar
  21. 21.
    Prakorn, R., P. Weerawat, and P. Ura (2006) Mass transfer modeling of membrane carrier system for extraction of Ce(IV) from sulfate media using hollow fiber supported liquid membrane.Kor. J. Chem. Eng. 23: 85–92.CrossRefGoogle Scholar
  22. 22.
    Aboudzadeh, M. R., Z. Jiawen, and W. Bin (2006) Modeling of protein adsorption to DEAE sepharose FF: Comparison of data with model simulation.Kor. J. Chem. Eng. 23: 124–130.CrossRefGoogle Scholar
  23. 23.
    Wlaschin, A. P., C. T. Trinh, R. Carlson, and F. Srienc (2006) The fractional contributions of elementary modes to the metabolism ofEscherichia coli and their estimation from reaction entropies.Metab. Eng. 8: 338–352.CrossRefGoogle Scholar
  24. 24.
    Jiang, Q. and S. Yao (2007) Predictive modeling of whole-cell bioactivity retention data in the presence of organic compounds.Biotechnol. Bioprocess Eng. 12: 228–234.CrossRefGoogle Scholar
  25. 25.
    Song, B. D., H. Ding, and S. C. Wang (2007) Hydrolysis of olive oil catalyzed by surfactant-coatedCandida rugosa lipase in a hollow fiber membrane reactor.Biotechnol. Bioprocess Eng. 12: 121–124.CrossRefGoogle Scholar
  26. 26.
    Omar, R., M. A. Abdullah, M. A. Hasan, M. Rosfarizan, and M. Marziah (2006) Kinetics and modelling of cell growth and substrate uptake inCentella asiatica cell culture.Biotechnol. Bioprocess Eng. 11: 223–229.CrossRefGoogle Scholar
  27. 27.
    Kwon, Y. J. and C. R. Engler (2005) Kinetic models for growth and product formation on multiple substrates.Biotechnol. Bioprocess Eng. 10: 587–592.CrossRefGoogle Scholar
  28. 28.
    Song, J. Y. and B. S. Kim (2005) Characteristics of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) production byRalstonia eutropha NCIMB 11599 and ATCC 17699.Biotechnol. Bioprocess Eng. 10: 603–606.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering 2007

Authors and Affiliations

  • Longan Shang
    • 1
    • 2
  • Dai Di Fan
    • 3
  • Moon Il Kim
    • 2
  • Jin-dal-rae Choi
    • 2
  • Ho Nam Chang
    • 2
  1. 1.College of Biological and Chemical Engineering, Ningbo Institute of TechnologyZhejiang UniversityNingboP. R. China
  2. 2.Department of Chemical and Biomolecular EngineeringKorea Advanced Institute of Science and TechnologyDaejeonKorea
  3. 3.Department of Chemical EngineeringNorthwest UniversityXianP. R. China

Personalised recommendations