Skip to main content
Log in

Modeling and optimization of methanol as a cosolvent in Amoxicillin synthesis and its advantage over ethylene glycol

  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The production of semi-synthetic beta-lactam antibiotics such as Amoxicillin may be performed enzymatically using penicillin acylase under mild conditions. However, the thermodynamically favored hydrolysis of the antibiotic product and the acyl donor substrate needs to be minimized to use the kinetically controlled route. The addition of cosolvents such as ethylene glycol and methanol (the two best solvents identified so far for semi-synthetic beta-lactam antibiotics) can achieve this to some degree, but these additives also produce enzyme inhibition and deactivation. In this study, we compared ethylene glycol and methanol under various substrate conditions. Methanol gave a better synthesis to hydrolysis ratio, although its deactivating effects adversely affected production at lower cosolvent concentrations than ethylene glycol. This effect and its dependence on substrate concentration was further modeled and optimized. A few targets of optimization such as Amoxicllin level, the synthesis to hydrolysis ratio, or a combination, were employed. While maximum levels of Amoxicillin synthesis were achievable only at high substrate concentrations, improvements derived from cosolvents were most significant at low substrate concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ospina, S., E. Barzana, O. T. Ramirez, and A. Lopez-Munguia (1996) Effect of pH in the synthesis of ampicillin by penicillin acylase.Enzyme Microb. Technol. 19: 462–469.

    Article  CAS  Google Scholar 

  2. Arroyo, M., I. de la Mata, C. Acebal, and M. P. Castillon (2003) Biotechnological applications of penicillin acylases: state-of-the-art.Appl. Microbiol. Biotechnol. 60: 507–514.

    CAS  Google Scholar 

  3. Illanes, A., Z. Cabrera, L. Wilson, and C. Aguirre (2003) Synthesis of cephalexin in ethylene glycol with glyoxylagarose immobilized penicillin acylase: temperature and pH optimization.Process Biochem. 39: 111–117.

    Article  CAS  Google Scholar 

  4. Halling, P. J., U. Eichhorn, P. Kuhl, and H.-D. Jakubke (1995) Thermodynamics of solid-to-solid conversion and application to enzymic peptide synthesis.Enzyme Microb. Technol. 17: 601–606.

    Article  CAS  Google Scholar 

  5. Ulijn, R. V., A. E. M. Janssen, B. D. Moore, and P. J. Halling (2001) Predicting when precipitation-driven synthesis is feasible: application to biocatalysis.Chem. Eur. J. 7: 2089–2098.

    Article  CAS  Google Scholar 

  6. Diender, M. B., A. J. J. Straathof, L. A. M. van der Wielen, C. Ras, and J. J. Heijnen (1998) Feasibility of the thermodynamically controlled synthesis of amoxicillin.J. Mol. Catal. B Enzym. 5: 249–253.

    Article  CAS  Google Scholar 

  7. Kim, M. G. and S. B. Lee (1996) Penicillin acylasecatalyzed synthesis of pivampicillin: Effect of reaction variables and organic cosolvents.J. Mol. Catal. B Enzym. 1: 71–80.

    Article  CAS  Google Scholar 

  8. Hernandez-Justiz, O., R. Fernandez-Lafuente, M. Terreni, and J. M. Guisan (1998) Use of aquoeus two-phase systems forin situ extraction of water soluble antibiotics during their synthesis by enzymes immobilized on porous supports.Biotechnol. Bioeng. 59: 73–79.

    Article  CAS  Google Scholar 

  9. Illanes, A. and A. Fajardo (2001) Kinetically controlled synthesis of ampicillin with immobilized penicillin acylase in the presence of organic solvents.J. Mol. Catal. B Enzym. 11: 587–595.

    Article  CAS  Google Scholar 

  10. Yang, L. and D.-Z. Wei (2003) Enhanced enzymatic synthesis of a semi-synthetic cephalosporin, cefaclor. within situ product removal.Biotechnol. Lett. 25: 1195–1198.

    Article  CAS  Google Scholar 

  11. Diender, M. B., A. J. J. Straathof, T. van der Does, M. Zomerdijk, and J. J. Heijnen (2000) Course of pH during the formation of amoxicillin by a suspension-to-suspension reaction.Enzyme Microb. Technol. 27: 576–582.

    Article  CAS  Google Scholar 

  12. Youshko, M. I., L. M. van Langen, E. de Vroom, F. van Rantwijk, R. A. Sheldon, and V. K. Svedas (2001) Highly efficient synthesis of ampicillin in an “aqueous solution-precipitate” system: repetitive addition of substrates in a semicontinuous process.Biotechnol. Bioeng. 73: 426–430.

    Article  CAS  Google Scholar 

  13. Youshko, M. I., H. M. Moody, A. L. Bukhanov, W. H. J. Boosten, and V. K. Svedas (2004) Penicillin acylasecatalyzed synthesis of beta-lactam antibiotics in highly condensed aqueous systems: beneficial impact of kinetic substrate supersaturation.Biotechnol. Bioeng. 85: 323–329.

    Article  CAS  Google Scholar 

  14. Basso, A., P. Spizzo, M. Toniutti, c. Ebert, P. Linda, and L. Gardossi (2006) Kinetically controlled synthesis of ampicillin and cephalexin in highly condensed systems in the absence of a liquid aqueous phase.J. Mol. Catal. B Enzym. 39: 105–111.

    Article  CAS  Google Scholar 

  15. Fernandez-Lafuente, R., C. M. Rosell, and J. M. Guisan (1991) Enzyme reaction engineering: synthesis of antibiotic catalysed by stabilized penicillin G acylase in the presence of organic cosolvents.Enzyme Microb. Technol. 13: 898–905.

    Article  CAS  Google Scholar 

  16. Aguirre, C., J. Baeza, and A. Illanes (1998) Cosolvent effect on the synthesis of ampicillin and cephalexin with penicillin acylase.Prog. Biotechnol. 15: 95–100.

    Article  CAS  Google Scholar 

  17. Park, C. B., S. B. Lee, and D. D. Y. Ryu (2000) Penicillin acylase-catalyzed synthesis of cefazolin in water-solvent mixtures: enhancement effect of ethyl acetate and carbon tetrachloride on the synthetic yield.J. Mol. Catal. B Enzym. 9: 275–281.

    Article  CAS  Google Scholar 

  18. Arroyo, M., R. Torres-Guzman, I. de la Mata, M. P. Castillon, and C. Acebal (2002) A kinetic examination of penicillin acylase stability in water-organic solvent systems at different temperatures.Biocatal. Biotransform. 20: 53–56.

    Article  CAS  Google Scholar 

  19. Wei, D.-Z. and L. Yang (2003) Effects of ethylene glycol on the synthesis of ampicillin using immobilized penicillin G acylase.J. Chem. Technol. Biotechnol. 78: 431–436.

    Article  CAS  Google Scholar 

  20. Aguirre, C., M. Toledo, V. Medina, and A. Illanes (2002) Effect of cosolvent and pH on the kinetically controlled synthesis of cephalexin with immobilized penicillin acylase.Process Biochem. 38: 351–360.

    Article  CAS  Google Scholar 

  21. Kim, M. G. and S. B. Lee (1996) Effect of organic solvents on penicillin acylase-catalyzed reactions: interaction of organic solvents with enzymes.J. Mol. Catal. B Enzym. 1: 181–190.

    Article  Google Scholar 

  22. Fernandez-Lafuente, R., C. M. Rosell, and J. M. Guisan (1998) The presence of methanol exerts a strong and complex modulation of the synthesis of different antibiotics by immobilized Penicillin G acylase.Enzyme Microb. Technol. 23: 305–310.

    Article  CAS  Google Scholar 

  23. Rosell, C. M., M. Terreni, R. Fernandez-Lafuente, and J. M. Guisan (1998) A criterion for the selection of monophasic solvents for enzymatic synthesis.Enzyme Microb. Technol. 23: 64–69.

    Article  CAS  Google Scholar 

  24. Arroyo, M., R. Torres-Guzman, I. de la Mata, M. P. Castillon, and C. Acebal (2000) Prediction of penicillin V acylase stability in water-organic co-solvent monophasic systems as a function of solvent composition.Enzyme Microb. Technol. 27: 122–126.

    Article  CAS  Google Scholar 

  25. Illanes, A., M. S. Anjari, C. Altamirano, and C. Aguirre (2004) Optimization of cephalexin synthesis with immobilized penicillin acylase in ethylene glycol medium at low temperatures.J. Mol. Catal. B Enzym. 30: 95–103.

    Article  CAS  Google Scholar 

  26. Illanes, A., F. Rodriguez, C. Bahamondes, and C. Altamirano (2005) Determination of lumped kinetic parameters and their thermal dependence for the synthesis of cephalexin with immobilized penicillin acylase in organic medium.Biochem. Eng. J. 24: 209–215.

    Article  CAS  Google Scholar 

  27. Kim, M. G. and S. B. Lee (1996) Penicillin acylase-catalyzed synthesis of beta-lactam antibiotics in water-methanol mixtures: Effect of cosolvent content and chemical nature of substrate on reaction rates and yields.J. Mol. Catal. B Enzym. 1: 201–211.

    Article  CAS  Google Scholar 

  28. Arroyo, M., R. Torres-Guzman, J. Torres-Bacete, I. de la Mata, M. P. Castillon, and C. Acebal (2001) Kinetic mechanism of penicillin V acylase activation by shortchain alcohols.Enzyme Microb. Technol. 29: 312–318.

    Article  CAS  Google Scholar 

  29. Chow, Y., J. Wu, and R. Li (2005) Influence of 6-aminopenicillanic acid on amoxicillin synthesis and p-hydroxyphenylglycine methyl ester hydrolysis.Biocatal. Biotransform. 23: 347–351.

    Article  CAS  Google Scholar 

  30. Ribeiro, M. P. A., A. L. O. Ferreira, R. L. C. Giordano, and R. C. Giordano (2005) Selectivity of the enzymatic synthesis of ampicillin byE. coli PGA in the presence of high concentrations of substrates.J. Mol. Catal. B Enzym. 33: 81–86.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yvonne Chow.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chow, Y., Li, R., Wu, J. et al. Modeling and optimization of methanol as a cosolvent in Amoxicillin synthesis and its advantage over ethylene glycol. Biotechnol. Bioprocess Eng. 12, 390–398 (2007). https://doi.org/10.1007/BF02931061

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02931061

Keywords

Navigation