Advertisement

The Journal of Geometric Analysis

, Volume 15, Issue 3, pp 405–423 | Cite as

Estimates on level set integral operators in dimension two

  • A. ComechEmail author
  • S. Roudenko
Article
  • 60 Downloads

Abstract

Both oscillatory integral operators and level set operators appear naturally in the study of properties of degenerate Fourier integral operators (such as generalized Randon transforms). The properties of oscillatory integral operators have a longer history and are better understood. On the other hand, level set operators, while sharing many common characteristics with oscillatory integral operators, are easier to handle.

We study L2-estimates on level set operators in dimension two and compare them with what is known about oscillatory integral operators. The cases include operators with non-degenerate phase functions and the level set version of Melrose-Taylor transform (as an example of a degenerate phase function). The estimates are formulated in terms of the Newton polyhedra and type conditions.

Math Subject Classifications

42B25 42B10 

Key Words and Phrases

Fourier integral operators degenerate phase function level set integral operators Melrose-Taylor transform 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Carbery, A., Christ, M., and Wright, J. Multidimensional van der Corput and sublevel set estimates,J. Amer. Math. Soc. 12(4), 981–1015, (1999).zbMATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    Comech, A. Oscillatory integral operators in scattering theory,Comm. Partial Differential Equations 22(5‐6) 841–867, (1997).zbMATHMathSciNetGoogle Scholar
  3. [3]
    Comech, A. Damping estimates for oscillatory integral operators with finite type singularities,Asymptot. Anal. 18(3–4), 263–278, (1998).zbMATHMathSciNetGoogle Scholar
  4. [4]
    Comech, A. Sobolev estimates for the Radon transform of Melrose and Taylor,Comm. Pure Appl. Math. 51(5), 537–550, (1998).zbMATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    Comech, A. Optimal regularity of Fourier integral operators with one-sided folds,Comm. Partial Differential Equations 24(7–8), 1263–1281, (1999).zbMATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    Comech, A., and Cuccagna, S. Integral operators with two-sided cusp singularities,Internat. Math. Res. Notices 23, 1225–1242, (2000).CrossRefMathSciNetGoogle Scholar
  7. [7]
    Cuccagna, S.L 2 estimates for averaging operators along curves with two-sidedk-fold singularities,Duke Math. J. 89(2), 203–216, (1997).zbMATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    Gelfand, I. M., and Graev, M.I. Line complexes in the spaceC n,Funkcional. Anal. i Priložen. 2(3), 39–52, (1968).MathSciNetGoogle Scholar
  9. [9]
    Greenleaf A. and Seeger, A. Fourier integral operators with fold singularities,J. Reine Angew. Math. 455, 35–56, (1994).zbMATHMathSciNetGoogle Scholar
  10. [10]
    Greenleaf, A. and Seeger, A. Fourier integral operators with cusp singularities,Amer. J. Math. 120(5), 1077–1119, (1998).zbMATHCrossRefMathSciNetGoogle Scholar
  11. [11]
    Greenleaf, A. and Seeger, A. On oscillatory integral operators with folding canonical relations,Studia Math. 132(2), 125–139, (1999).zbMATHMathSciNetGoogle Scholar
  12. [12]
    Greenleaf, A. and Seeger, A. Oscillatory and Fourier integral operators with degenerate canonical relations, preprint, (2002).Google Scholar
  13. [13]
    Greenleaf, A., Seeger, A., and Wainger, S. Estimates for generalized Radon transforms in three and four dimensions,Analysis, Geometry, Number Theory: The Mathematics of Leon Ehrenpreis, (Philadelphia, PA, 1998), Amer. Math. Soc. Providence, RI, 243–254, (2000).Google Scholar
  14. [14]
    Greenleaf, A. and Uhlmann, G. Nonlocal inversion formulas for the X-ray transform,Duke Math. J. 58 (1), 205–240, (1989).zbMATHCrossRefMathSciNetGoogle Scholar
  15. [15]
    Hörmander, L. Fourier integral operators, I,Acta Math. 127(1–2), 79–183, (1971).zbMATHCrossRefMathSciNetGoogle Scholar
  16. [16]
    Melrose, R.B. and Taylor, M.E. Near peak scattering and the corrected Kirchhoff approximation for a convex obstacle,Adv. in Math. 55(3), 242–315, (1985).zbMATHCrossRefMathSciNetGoogle Scholar
  17. [17]
    Pan, Y. and Sogge, C.D. Oscillatory integrals associated to folding canonical relations,Colloq. Math. 60/61(2), 413–419, (1990).MathSciNetGoogle Scholar
  18. [18]
    Phong, D.H. Singular integrals and Fourier integral operators,Essays on Fourier Analysis in Honor of Elias M. Stein, (Princeton, NJ, 1991), Princeton University Press, Princeton, NJ, 286–320, (1995).Google Scholar
  19. [19]
    Phong, D.H. and Stein, E.M. Some further classes of pseudodifferential and singular-integral operators arising in boundary value problems I, Composition of operators,Amer. J. Math. 104(1), 141–172, (1982).zbMATHCrossRefMathSciNetGoogle Scholar
  20. [20]
    Phong, D.H. and Stein, E.M. Singular integrals related to the Radon transform and boundary value problems,Proc. Nat. Acad. Sci. USA 80(24), Phys. Sci. 7697–7701, (1983).zbMATHCrossRefMathSciNetGoogle Scholar
  21. [21]
    Phong, D.H. and Stein, E.M. Hilbert integrals, singular integrals, and Radon transforms, I,Acta Math.,157(1–2), 99–113, (1986).zbMATHCrossRefMathSciNetGoogle Scholar
  22. [22]
    Phong, D.H. and Stein, E.M. Hilbert integrals, singular integrals, and Radon transforms, II,Invent. Math. 86(1), 75–113, (1986).zbMATHCrossRefMathSciNetGoogle Scholar
  23. [23]
    Phong, D.H. and Stein, E.M. Singular Radon transforms and oscillatory integrals,Duke Math. J. 58 (2), 347–369, (1989).zbMATHCrossRefMathSciNetGoogle Scholar
  24. [24]
    Phong, D.H. and Stein, E.M. Radon transforms and torsion,Internat. Math. Res. Notices (4), 49–60, (1991).CrossRefMathSciNetGoogle Scholar
  25. [25]
    Phong, D.H. and Stein, E.M. Oscillatory integrals with polynomial phases,Invent. Math. 110(1), 39–62, (1992).zbMATHCrossRefMathSciNetGoogle Scholar
  26. [26]
    Phong, D.H. and Stein, E.M. Models of degenerate Fourier integral operators and Radon transforms,Ann. of Math. (2) 140(3), 703–722, (1994).zbMATHCrossRefMathSciNetGoogle Scholar
  27. [27]
    Phong, D.H. and Stein, E.M. On a stopping process for oscillatory integrals,J. Geom. Anal. 4(1), 105–120, (1994).zbMATHMathSciNetGoogle Scholar
  28. [28]
    Phong, D.H. and Stein, E.M. Operator versions of the van der Corput lemma and Fourier integral operators,Math. Res. Lett. 1(1), 27–33, (1994).zbMATHMathSciNetGoogle Scholar
  29. [29]
    Phong, D.H. and Stein, E.M. The Newton polyhedron and oscillatory integral operators,Acta Math. 179(1), 105–152, (1997).zbMATHCrossRefMathSciNetGoogle Scholar
  30. [30]
    Phong, D.H. and Stein, E.M. Damped oscillatory integral operators with analytic phases,Adv. Math. 134(1), 146–177, (1998).zbMATHCrossRefMathSciNetGoogle Scholar
  31. [31]
    Phong, D.H., Stein, E.M. and Sturm, J.A. On the growth and stability of real analytic functions,Amer. J. Math. 121(3), 519–554, (1999).zbMATHCrossRefMathSciNetGoogle Scholar
  32. [32]
    Phong, D.H., Stein, E.M. and Sturm, J.A. Multilinear level set operators, oscillatory integral operators, and Newton polyhedra,Math. Ann. 319(3), 573–596, (2001).zbMATHCrossRefMathSciNetGoogle Scholar
  33. [33]
    Seeger, A. Degenerate Fourier integral operators in the plane,Duke Math. J. 71(3), 685–745, (1993).zbMATHCrossRefMathSciNetGoogle Scholar
  34. [34]
    Seeger, A. Radon transforms and finite type conditions,J. Amer. Math. Soc. 11(4), 869–897, (1998).zbMATHCrossRefMathSciNetGoogle Scholar
  35. [35]
    Seeger, A., Sogge, C.D. and Stein, E.M. Regularity properties of Fourier integral operators,Ann. of Math. (2) 134(2), 231–251 (1991).CrossRefMathSciNetGoogle Scholar
  36. [36]
    Tataru, D. On the regularity of boundary traces for the wave equation,Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4),26(1), 185–206, (1998).zbMATHMathSciNetGoogle Scholar
  37. [37]
    Varčenko, A.N. Newton polyhedra and estimates of oscillatory integrals,Funktsional. Anal. i Prilozhen. 10 (3), 13–38, (1976).Google Scholar

Copyright information

© Mathematica Josephina, Inc. 2005

Authors and Affiliations

  1. 1.Texas A&M UniversityUSA
  2. 2.Duke UniversityDurhamUSA

Personalised recommendations