Applied Biochemistry and Biotechnology

, Volume 18, Issue 1, pp 75–90 | Cite as

Simultaneous saccharification and fermentation of lignocellulose

Process evaluation
  • John D. Wright
  • Charles E. Wyman
  • Karel Grohmann
Session 3-Original Papers


Simultaneous saccharification and fermentation (SSF) processes for producing ethanol from lignocellulose are capable of improved hydrolysis rates, yields, and product concentrations compared to separate hydrolysis and fermentation (SHF) systems, because the continuous removal of the sugars by the yeasts reduces the end-product inhibition of the enzyme complex. Recent experiments using Genencor 150L cellulase and mixed yeast cultures have produced yields and concentrations of ethanol from cellulose of 80% and 4.5%, respectively. The mixed culture was employed because B.clausenii has the ability to ferment cellobiose (further reducing end-product inhibition), while the brewing yeastS. cerevisiae provides a robust ability to ferment the monomeric sugars. These experimental results are combined with a process model to evaluate the economics of the process and to investigate the effect of alternative processes, conditions, and organisms.

Index Entries

Saccharification fermentation lignocellulose 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wright, J. D., Power, A. J., and Douglas, L. J. (1986),Biotech. Bioeng. Symp. 17.Google Scholar
  2. 2.
    Badger Engineers, Inc. (1984), Economic Feasibility Study of an Acid-Based Ethanol Plant, SERI Subcontract ZX-3-030-96-2.Google Scholar
  3. 3.
    ICARUS Corp. (1987),COST Systems User’s Manual.Google Scholar
  4. 4.
    Fan, L. T., Lee, Y. H., and Gharpuray, M. M. (1982),Adv. Biochem. Eng. 23, 158.Google Scholar
  5. 5.
    Cowling, E. G., and Kirk, T. K. (1976),Biotech. Bioeng. Symp. 6, 59.Google Scholar
  6. 6.
    Grethlein, H. D., Allen, D. C, and Converse, A. O. (1984),Biotech. Bioeng. 26, 1498.Google Scholar
  7. 7.
    Grohmann, K., Torget, R., and Himmel, M. (1985),Biotech. Bioeng. Symp. 15.Google Scholar
  8. 8.
    Brownell, H. H., and Saddler, J. N. (1984),Biotech. Bioeng. Symp. 14, 55.Google Scholar
  9. 9.
    Holtzapple, M. T., and Humphrey, A. E. (1984),Biotech. Bioeng. 26, 670.CrossRefGoogle Scholar
  10. 10.
    Torget, R., Grohmann, K., and Wright, J. (1987),Appl. Biochem. Biotech. Google Scholar
  11. 11.
    Mandels, M. (1981), inAnn. Reports Ferm. Proc. 5, pp. 35–78.Google Scholar
  12. 12.
    McLean, D., and Podruzny, M. F. (1985),Biotech. Lett. 9, 683.CrossRefGoogle Scholar
  13. 13.
    Montenecourt, B. S. (1983),Trends Biotech. 1, 156.CrossRefGoogle Scholar
  14. 14.
    Hendy, N., Wilke, C. R., and Blanch, H. W. (1982),Biotech. Lett. 4, 785.CrossRefGoogle Scholar
  15. 15.
    Wood, T. M. (1985),Biochem. Soc. Trans. 13, 407.Google Scholar
  16. 16.
    Wyman, C. E., Spindler, D. D., Grohmann, K., and Lastick, S. M.Biotech Bioeng. Symp. 17, 221.Google Scholar
  17. 17.
    Spindler, D. D., Wyman, C. E., Mohagheghi, A., and Grohmann, K. (1987),Appl. Biochem. Biotech. Google Scholar
  18. 18.
    Takagi, M., Abe, S., Suzuki, S., Emert, G. H., and Yata, N. (1977),Proc. Bioconversion Symp., IIT Delhi, India, pp. 551–571.Google Scholar
  19. 19.
    Lastick, S. M., Spindler, D. D., Grohmann, K. (1982), inWood and Agricultural Residues. Research on Use for Feed, Fuels and Chemicals,Proc. of the Conf., sponsored by Amer. Chem. Soc., Kansas City, MO, Sept 12–17, E. J. Soltes, ed.Google Scholar
  20. 20.
    Lastick, S. M., Spindler, D., Terrell, S., and Grohmann K. (1984), inThe World Biotech Report 1984, USA Proc. Biotech.84, pp. 593–600.Google Scholar
  21. 21.
    Mukataka, S., Tada, M., and Takahashi, J. (1983),J. Ferment. Technol. 61, 389.Google Scholar
  22. 22.
    Sakata, M., Ooshima, H., and Harano, Y. (1985),Biotechnol. Lett. 7, 689.CrossRefGoogle Scholar
  23. 23.
    Tanaka, M., Takenawa, S., Matsuno, R., and Kamibuko, T. (1978),J. Ferment. Technol. 56, 108.Google Scholar
  24. 24.
    Reese, E. T., and Ryu, D. Y. (1980),Enzyme Microb. Technol. 2, 239.CrossRefGoogle Scholar
  25. 25.
    Kim, M. H., Lee, S. B., Ryu, D. Y., and Reese, E. T. (1982),Enzyme Microb. Technol. 4, 99.CrossRefGoogle Scholar
  26. 26.
    Nystrom, J. M., and Arden, R. K. (1976),Proc. Biochem. 11, 26.Google Scholar
  27. 27.
    Wilke, C. R., and Blanch, H. W. (1985), Process Development Studies on the Bioconversion of Cellulase and Production of Ethanol,Annual Report to the Solar Energy Research Institute. Google Scholar
  28. 28.
    Blotkamp, P. J., Takagi, M., Pemberton, M. S., and Emert, G. H. (1978),AIChE Symp. Ser. 181, 85.Google Scholar
  29. 29.
    Pemberton, M. S., Brown, R. D., and Emert, G. H. (1980),Can. J. of Chem. Eng. 58, 723.CrossRefGoogle Scholar
  30. 30.
    Gosh, P., Pamment, N. B., and Martin, W. R. B. (1982),Enzyme Microb. Technol. 4, 425.CrossRefGoogle Scholar
  31. 31.
    Takagi, M. (1984),Biotech. Bioeng. 26, 1506.CrossRefGoogle Scholar
  32. 32.
    Ooshima, H., Ishitani, Y., and Harano, Y. (1985),Biotech. Bioeng. 27, 389.CrossRefGoogle Scholar
  33. 33.
    Ghose, T. K., Roychodhury, P. K., and Ghosh, P. (1984),Biotech. Bioeng. 26, 377.CrossRefGoogle Scholar
  34. 34.
    Orichowskyj, S. T. (1982), Recovery of Cellulase Enzymes by Counter Current Adsorption, MS thesis, LBL-15153.Google Scholar
  35. 35.
    Vallander, L., and Eriksson, K. E. (1985),Biotech. Bioeng. 27, 650.CrossRefGoogle Scholar
  36. 36.
    Eriksson, K. E. (1987), Am. Chem. Soc. Nat. Meeting, Denver, CO.Google Scholar

Copyright information

© Humana Press Inc. 1988

Authors and Affiliations

  • John D. Wright
    • 1
  • Charles E. Wyman
    • 1
  • Karel Grohmann
    • 1
  1. 1.Solar Energy Research InstituteGolden

Personalised recommendations