The Journal of Geometric Analysis

, Volume 12, Issue 4, pp 543–580 | Cite as

Reflection Ideals and mappings between generic submanifolds in complex space

  • M. S. Baouendi
  • Nordine Mir
  • Linda Preiss Rothschild


Results on finite determination and convergence of formal mappings between smooth generic submanifolds in ℂN are established in this article. The finite determination result gibes sufficient conditions to guarantee that a formal map is uniquely determined by its jet, of a preassigned order, at a point. Convergence of formal mappings for real-analytic generic submanifolds under appropriate assumptions is proved, and natural geometric conditions are given to assure that if two germs of such submanifolds are formally equivalent, then, they are necessarily biholomorphically equivalent. It is also shown that if two real-algebraic hypersurfaces in ℂN are biholomorphically equivalent, then, they are algebraically equivalent. All the results are first proved in the more general context of “reflection ideals” associated to formal mappings between formal as well as real-analytic and real-algebraic manifolds.

Math Subject Classifications


Key Words and Phrases

generie submanifold biholomorphic equivalence formal equivalence algebraic equivalence formal mapping reflection ideal finite type holomorphically nondegenerate 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Artin, M., Algebraic approximation of structures over complete local rings,Inst. Hautes Etudes Sci. Publ. Math.,36, 23–58, (1969).MATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    Artin, M. On the solutions of analytic equations,Invent. Math.,5, 277–291, (1968).MATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    Baouendi, M.S., Ebenfelt, P., and Rothschild, L.P. Convergence and finite determination of formal CR mappings,J. Am. Math. Soc.,13, 697–723, (2000).MATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    Baouendi, M.S., Ebenfelt, P., and Rothschild, L.P. Local geometric properties of real submanifolds in complex space,Bull. Am. Math. Soc.,37, 309–336, (2000).MATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    Baouendi, M.S., Ebenfelt, P., and Rothschild, L.P. Dynamics of the Segre varieties of a real submanifold in complex space, to appear inJ. Alg. Geom., CV/0008112, (2000).Google Scholar
  6. [6]
    Baouendi, M.S., Ebenfelt, P., and Rothschild, L.P.Real Submanifolds in Complex Space and Their Mappings, Princeton Math. Series,47, Princeton University Press, (1999).Google Scholar
  7. [7]
    Baouendi, M.S., Ebenfelt, P., and Rothschild, L.P. Rational dependence of smooth and analytic CR mappings on their jets,Math. Ann.,315, 205–249, (1999).MATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    Baouendi, M.S., Ebenfelt, P., and Rothschild, L.P. CR automorphisms of real analytic manifolds in complex space,Comm. Anal. Geom.,6, 291–315, (1998).MATHMathSciNetGoogle Scholar
  9. [9]
    Baouendi, M.S., Ebenfelt, P., and Rothschild, L.P. Parametrization of local biholomorphism of real-analytic hypersurfaces,Asian J. Math.,1, 1–16, (1997).MATHMathSciNetGoogle Scholar
  10. [10]
    Baouendi, M.S., Ebenfelt, P., and Rothschild, L.P. Algebraicity of holomorphic mappings between real algebraic sets in ℂN,Acta Math.,177, 225–273, (1996).MATHCrossRefMathSciNetGoogle Scholar
  11. [11]
    Baouendi, M.S., Jacobowitz, H., and Treves, F. On the analyticity of CR mappings,Ann. of Math.,122, 365–400, (1985).CrossRefMathSciNetGoogle Scholar
  12. [12]
    Baouendi, M.S., Rothschild, L.P., and Zaitsev, D. Equivalences of real submanifolds in complex space, (preprint 2000). http://arXiv. org/abs/math.CV/0002186, to appear inJ. Diff. Geom. Google Scholar
  13. [13]
    Baouendi, M.S., Rothschild, L.P., and Zaitsev, D. Points in general position in real-analytic submanifolds in ℂN and applications,Ohio State University Mathematical Research Institute Publication,9, 1–20, (2001).MathSciNetGoogle Scholar
  14. [14]
    Bloom, T., and Graham, I. On type conditions for generic real submanifolds of ℂN,Invent. Math.,40, 217–243, (1977).CrossRefMathSciNetGoogle Scholar
  15. [15]
    Cartan, E. Sur la géométrie pseudo-conforme des hypersurfaces de deux variables complexes, Part I and II,Ann. Math. Pura Appl.,11, 17–90 andAnn. Sc. Norm. Sup. Pisa,1, 333–354, (1932).MATHCrossRefMathSciNetGoogle Scholar
  16. [16]
    Chern, S.S., and Moser, J.K. Real hypersurfaces in complex manifolds,Acta Math.,133, 219–271, (1974).CrossRefMathSciNetGoogle Scholar
  17. [17]
    Coupet, B., Meylan, F., and Sukhov, A. Holomorphic maps of algebraic CR manifolds,Internat. Math. Res. Notices,1, 1–29, (1999).CrossRefMathSciNetGoogle Scholar
  18. [18]
    Ebenfelt, P. FInite jet determination of holomorphic mappings at the boundary,Asian J. Math.,5, 637–662, (2001).MATHMathSciNetGoogle Scholar
  19. [19]
    Golubitsky, M., and Guillemin, V.Stable Mapping and Their Singularities, Springer-Verlag, Berlin, (1973).Google Scholar
  20. [20]
    Huang, X. On the mapping problem for algebraic real hypersurfaces in the complex spaces of different dimensions,Ann. Inst. Fourier (Grenoble),44, 433–463, (1994).MATHMathSciNetGoogle Scholar
  21. [21]
    Huang, X. Schwarz reflection principle in complex spaces of dimension two,Comm. Partial Differential Equations,21, 1781–1828 (1996).MATHCrossRefMathSciNetGoogle Scholar
  22. [22]
    Kohn, J.J. Boundary behavior of {ie579-1} on weakly pseudo-convex manifolds of dimension two,J. Differ. Geom.,6, 523–542, (1972).MATHMathSciNetGoogle Scholar
  23. [23]
    Lamel, B. Holomorphic maps of real submanifolds in complex spaces of different dimensions,Pacific J. Math.,201, 357–387, (2001).MATHMathSciNetGoogle Scholar
  24. [24]
    Mir, N. Formal biholomorphic maps of real analytic hypersurfaces,Math. Research Lett.,7, 343–359, (2000).MATHMathSciNetGoogle Scholar
  25. [25]
    Mir, N. On the convergence of formal mappings, to appear inComm. Anal. Geom., (2000)Google Scholar
  26. [26]
    Mir, N. Germs of holomorphic mappings between real algebraic hypersurface,Ann. Inst. Fourier (Grenoble),48, 1025–1043, (1998).MATHMathSciNetGoogle Scholar
  27. [27]
    Moser, J., and Webster, S.M. Normal forms for real surfaces in ℂ2 near complex tangents and hyperbolic surface transformations,Acta Math.,150, 255–296, (1983).MATHCrossRefMathSciNetGoogle Scholar
  28. [28]
    Stanton, N. Infinitesimal CR automorphisms of real hypersurfaces,Am. J. Math.,118, 209–233, (1996).MATHCrossRefGoogle Scholar
  29. [29]
    Tanaka, N. On the pseudo-conformal geometry of hypersurfaces of the space ofn complex variables,J. Math. Soc. Japan,14, 397–429, (1962).MATHMathSciNetCrossRefGoogle Scholar
  30. [30]
    Webster, S.M. On the mapping problem for algebraic real hypersurfaces,Invent. Math.,43, 53–68 (1977).MATHCrossRefMathSciNetGoogle Scholar
  31. [31]
    Zaitsev, D. Algebraicity of local holomorphisms between real-algebraic submanifolds of complex spaces,Acta Math.,183, 273–305, (1999).MATHCrossRefMathSciNetGoogle Scholar
  32. [32]
    Zaitsev, D. Germs of local automorphisms of real-analytic CR structures and analytic dependence onk-jets,Math. Res. Lett.,4, 823–842, (1997).MATHMathSciNetGoogle Scholar

Copyright information

© Mathematica Josephina, Inc. 2002

Authors and Affiliations

  • M. S. Baouendi
    • 1
  • Nordine Mir
    • 2
  • Linda Preiss Rothschild
    • 1
  1. 1.Department of Mathematics, 0112University of California at San DiegoLa Jolla
  2. 2.Laboratoire de Mathématiques Raphaël Salem, UMR 6085 CNRSUniversité de RouenMont-Saint-Aignan CedexFrange

Personalised recommendations