Journal of Genetics

, Volume 68, Issue 2, pp 93–108 | Cite as

Symbiotic and galactose utilization properties of phage RMP64-resistant mutants affecting three complementation groups inRhizobium meliloti

  • S. P. S. Khanuja
  • Sushil Kumar
Article

Abstract

Random Tn5 insertional mutants were induced inRhizobium meliloti Rmd201, a streptomycin-resistant mutant of AK631 (which is itself a compact colony morphology mutant of the wild-type strain Rm41), and screened for sensitivity to a set of 16 phages. Out of 3000 mutants 240 were found to be phage-resistant. The phage-resistant mutants were separable into six groups on the basis of their sensitivity pattern against test phages. Nodulation tests on alfalfa showed that although all the phage-resistant mutants induced root nodules, 7 mutants out of 12 of a class resistant to phage RMP64 (Sxf-) induced atypical nodules that were ineffective in nitrogen fixation (Fix-). The aberrant nodules were small, white, contained only a few bacteria and no bacteroids, and phenotypically resembled nodules elicited by already knownexoB, exoH, ndvA andndvB mutants ofR. meliloti. Spontaneous mutants selected for resistance to RMP64 also fell into two groups: Fix+ and Fix-. Genetic complementation tests between the Sxf- mutants defined three genessxfA, sxfB andsxfC, of whichsxfA andsxfB comprise an operon. These also demonstrated thatsxfA, sxfB andsxfC must be located on the same replicon. All the Sxf- mutants were Calcofluor-positive, like their parent strains Rmd201 and AK631. Characterization of carbohydrate metabolism of the mutants revealed that while thesxfA (Fix-) andsxfB (Fix+) mutants utilized galactose as sole carbon source,sxfC (Fix-) mutants did not. It has been concluded thatsxf A, sxfB andsxfC are new genetic loci and thatsxfA andsxfC have roles in nodule invasion and development.

Keywords

Rhizobium meliloti symbiotic genes sxf genes phage resistance markers nodulation mutants 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aguilar O. M., Kapp D. and Pühler A. 1985 Characterizalion of aRhizobium meliloti gene (fixF) located near the common nodulation region.J. Bacterial. 164: 245–254Google Scholar
  2. Banfalvi Z., Kondorosi E. and Kondorosi A. 1985Rhizobium meliloti carries two megaplasmids.Plasmid 13: 129–138PubMedCrossRefGoogle Scholar
  3. Batut J., Terzaghi B., Gherardi M., Huguet M., Terzaghi E., Garnerone A. M., Boistard P. and Huguet T. 1985 Localization of a symbioticfix region onRhizobium meliloti pSym megaplasmid more than 200 kilobases from thenod-nif region.Mol. Gen. Genet. 199: 232–239CrossRefGoogle Scholar
  4. Bauer W. D. 1981 Infection of legumes by rhizobia.Annu. Rev. Plant Physiol. 32: 407–409CrossRefGoogle Scholar
  5. Beringer J. E., Beynon J. L., Buchanan-Wollaston A. V. and Johnston A. W. B. 1978 Transfer of the drug resistance transposon Tn5 toRhizobium.Nature (London) 276: 633–634CrossRefGoogle Scholar
  6. Beveridge T. J. 1981 Ultrastruclure, chemistry and function of bacterial wall.Int. Rev. Cytol. 72: 229–317PubMedCrossRefGoogle Scholar
  7. Boyer H. S. and Roulland-Dussoix D. 1969 A complementation analysis of the restriction and modification of DNA inEscherichia coli.J. Mol. Biol. 41: 459–472PubMedCrossRefGoogle Scholar
  8. Braun V. and Hantke K. 1977 Bacterial receptors for phages and colicins as constituents of specific transport systems. InReceptors and recognition (eds) J. L. Reissig (London: Chapman and Hall) series B, vol. 3, pp. 101–130Google Scholar
  9. Braun V. and Hantke K. 1981 Bacterial cell surface receptors. InOrganization of prokaryotic cell membranes (eds) B. K. Ghosh (Boca Raton, Florida: CRC Press) vol. 2, pp. 1–73Google Scholar
  10. Brewin N. J., Beringer J. E. and Johnston A. W. B. 1980 Plasmid-medialed transfer of host range specificity.J. Gen. Microbiol. 120: 413–420Google Scholar
  11. Buikema W. J., Klingensmith J. A., Gibbons S. L. and Ausubel F. M. 1987 Conservation of structure and location ofRhizobium meliloti andKlebsiella pneumoniae nifB genes.J. Bacterial. 169: 1120–1126Google Scholar
  12. Carlson R. W., Kalembasa S., Turowaki D., Pachori P. and Noel K. D. 1987 Characterization of the lipopolysaccharide from aRhizobium phaseoli mutant that is defective in infection thread development.J. Bacleriol. 169: 4923–4928Google Scholar
  13. Corbin D., Barran L. and Ditta G. 1983 Organization and expression ofRhizobium meliloti nitrogen fixation genes.Proc. Nad. Acad. Sci. USA 80: 3005–3009CrossRefGoogle Scholar
  14. Coslerton J. W., Merrie T. J. and Cheng K.-J. 1985 Phenomena of bacterial adhesion. InBacterial adhesion (eds.) D. C. Savage and M. Fletcher (New York: Plenum Press)Google Scholar
  15. Dart P. 1977 Infection and development of leguminous nodules. InA treatise on dinitrogen fixation, Section 111: Biology (eds.) R. W. F. Hardy and W. S. Silver (New York: Wiley and Sons) pp. 367–472Google Scholar
  16. David M., Daveran M.-L., Batut J., Dadieu A., Domerque O., Ghai J., Herlig C, Boistard P. and Kahn D. 1988 Cascade regulation ofnif gene expression inRhizobium meliloti.Cell 54: 671–683PubMedCrossRefGoogle Scholar
  17. Debellé F., Maillet F., Vasse J., Rosenberg C., de Billy F., Truchet G., Dénarié J. and Ausubel F. M. 1988 Interference betweenRhizobium meliloti andRhizobium trifolii nodulation genes: genetic basis ofR. meliloti dominance.J. Bacleriol. 170: 5718–5727Google Scholar
  18. Debellé F., Rosenberg C, Vasse J., Maillet F., Martinez E., Dénarié J. and Truchet G. 1986 Assignment of symbiotic developmental phenotypes to common and specific nodulation (nod) genetic loci ofRhizobium meliloti.J. Bacterial. 168: 1075–1086Google Scholar
  19. Ditta G., Corbin D., Leong S., Barran L. and Helinski D. R. 1980 Broad host range DNA cloning system for gram-negative bacteria: Construction of a gene bank ofRhizobium meliloti.Proc. Natl. Acad. Sci. USA 77: 7347–7351PubMedCrossRefGoogle Scholar
  20. Doherty D., Leigh J. A., Glazebrook J. and Walker G. C. 1988Rhizobium meliloti mutants that overproduce theR. meliloti acidic Calcofluor-binding exopolysaccharide.J. Bacteriol. 170: 4249–4256PubMedGoogle Scholar
  21. Dudley M. E., Jacobs T. W. and Long S. R. 1987 Microscopic studies of cell divisions induced in alfalfa roots byRhizobium meliloti.Planta 171: 289–301CrossRefGoogle Scholar
  22. Duncan M. J. 1981 Properties of Tn5-induced carbohydrate mutants inRhizobium meliloti.J. Gen. Microbiol. 172: 61–67Google Scholar
  23. Dylan T., Ielpi L., Slanfied S., Kashyap L., Douglas C, Yanofsky M., Ncster E., Helinski D. R. and Ditta G. 1986Rhizobium meliloti genes required for nodule development are related to chromosomal virulence genes inAgrobacterium lumefaciens.Proc. Natl. Acad. Sci. USA 83: 4403–1407PubMedCrossRefGoogle Scholar
  24. Earl C. D., Ronson C. W. and Ausubel F. M. 1987 Genetic and structural analysis ofRhizobium meliloti fixA, fixB, fixC and JixX genes.J. Bacteriol. 169: 1127–1136PubMedGoogle Scholar
  25. Figurski D. H. and Helinski D. R. 1979 Replication of an origin-containing derivative of plasmid pRK2 dependent on a plasmid function provided intrans.Proc. Natl. Acad. Sci. USA 76: 1648–1652PubMedCrossRefGoogle Scholar
  26. Finan T. M., Hartwieg E., LeMieux K., Bergman K., Walker G. C. and Signer E. R. 1984 General transduction inRhizobium meliloti.J. Bacteriol. 159: 120–124PubMedGoogle Scholar
  27. Finan T. M., Kunkel B., De Vos G. F. and Signer E. R. 1986 Second symbiotic megaplasmid inRhizobium meliloti carrying exopolysaccharide and thiamine synthesis genes.J. Bacteriol. 167: 66–72PubMedGoogle Scholar
  28. Geremia R. A., Cavaignae S., Zorregueta A., Toro N., Olivares J. and Ugalde R. A. 1987 ARhizobium meliloti mutant that forms ineffective pseudonodules in alfalfa produces exopolysaccharide but fails to form beta(l,2) glucan.J. Bacteriol. 169: 880–884PubMedGoogle Scholar
  29. Hancock R. E. W. 1987 Role of porins in outer membrane permeability.J. Bacteriol. 169: 929–933PubMedGoogle Scholar
  30. Handelsman J., Ugalde R. A. and Brill W. J. 1984Rhizobium meliloti competitiveness and the alfalfa agglutinin.J. Bacteriol. 157: 703–707PubMedGoogle Scholar
  31. Hayat M. A. 1972Basic electron microscopy techniques (New York: Van Nostrand Reinhold)Google Scholar
  32. Hirsch A. M., Bang M. and Ausubel F. M. 1983 Ultrastructural analysis of ineffective alfalfa nodules formed bynif::Tn5 mutants ofRhizobium meliloti.J. Bacteriol. 155: 367–380PubMedGoogle Scholar
  33. Hirsch A. M., Long S. R., Bang M, Haskins N. and Ausubel F. M. 1982 Structural studies of alfalfa roots infected with nodulation mutants ofRhizobium meliloti.J. Bacteriol. 151: 411–419PubMedGoogle Scholar
  34. Hirsch A. M. and Smith C. A. 1987 Effects ofRhizobium meliloti nif andfix mutants on alfalfa root nodule development.J. Bacteriol. 169: 1137–1146PubMedGoogle Scholar
  35. Honma M. A. and Ausubel F. M. 1987Rhizobium meliloti has three functional copies of thenodD symbiotic regulatory gene.Proc. Natl. Acad. Sci. USA 84: 8558–8562PubMedCrossRefGoogle Scholar
  36. Horvath B., Bachem C. W. B., Schell J. and Kondorosi A. 1987 Host-specific regulation of nodulation genes inRhizobium is mediated by a plant signal interacting with thenodD gene product.EM BO J. 6: 841–848Google Scholar
  37. Horvath B., Kondorosi E., John M., Schmidt J., Török I., Györgypal Z., Barabas, I., Wieneke U., Schell J. and Kondorosi A. 1986 Organization, structure and symbiotic function ofRhizobium meliloti nodulation genes determining host specificity for alfalfa.Cell 46: 335–343PubMedCrossRefGoogle Scholar
  38. Jacobs T. W., Egelhoff T. T. and Long S. R. 1985 Physical and genetic map of aRhizobium meliloti nodulation gene region and nucleotide sequence ofnodC.J. Bacteriol. 162: 469–476PubMedGoogle Scholar
  39. John M., Schmidt J., Wieneke U., Kondorosi E., Kondorosi A. and Schell J. 1985 Expression of the nodulation genenodC ofRhizobium meliloti inE. coli—Role of the NodC gene product in nodulation.EM BO J. 4: 2425–2430Google Scholar
  40. Keiber J., Clover R., Finan T. M. and Signer E. R. 1987 Surface properties ofRhizobium meliloti associated with symbiosis, InMolecular genetics of plant-microbe interactions (eds.) D. P. S. Verma and N. Brisson (New York: Springer-Verlag) pp. 182–184Google Scholar
  41. Khanuja S. P. S. and Kumar S. 1988 Isolation of phages forRhizobium meliloti AK631.Indian J. Exp. Biol. 26: 665–667Google Scholar
  42. Klein S., Hirsch A. M., Smith C. A. and Signer E. R. 1988a Interaction ofnod andexo Rhizobium meliloti in alfalfa nodulation.Mol. Plant-Micro. Interaction 1: 94–100Google Scholar
  43. Klein S., Walker G. C. and Signer E. R. 1988b Allnod genes ofRhizobium meliloti are involved in alfalfa nodulation byexo mutants.J. Bacteriol. 170: 1003–1006PubMedGoogle Scholar
  44. Kondorosi E., Banfalvi Z. and Kondorosi A. 1984 Physical and genetic analysis of a symbiotic region ofRhizobium meliloti: identification of nodulation genes.Mol. Gen. Genet. 193: 445–452CrossRefGoogle Scholar
  45. Koshland D. E. 1979 Bacterial chemotaxis. InThe bacteria (eds) I. C. Gunsalus (New York: Academic Press) vol. 7, pp. 111–166Google Scholar
  46. Kumar S. 1976 Properties of adenyl cyclase and cyclic adenosine 3’,5’-monophosphate receptor proteindeficient mutants ofEscherichia coli.J. Bacteriol. 125: 545–555PubMedGoogle Scholar
  47. Leigh J. A., Reed J. W., Hanks J. F., Hirsch A. M. and Walker G. C. 1987Rhizobium meliloti mutants that fail to succinylate their Calcofluor-binding exopolysaccharide are defective in nodule invasion.Cell 51: 579–587PubMedCrossRefGoogle Scholar
  48. Leigh J. A., Signer E. R. and Walker G. C. 1985 Exopolysaccharide-deficient mutants ofRhizobium meliloti that form ineffective nodules.Proc. Natl. Acad. Sci. USA 82: 6231–6235PubMedCrossRefGoogle Scholar
  49. Lindberg A. A. 1977 Bacterial surface carbohydrate and bacteriophage adsorption. InSurface carbohydrate of the prokaryotic cell (ed.) I. W. Sutherland (New York: Academic Press) pp. 289–356Google Scholar
  50. Long S. R. 1984 Genetics ofRhizobium nodulation. InPlant-microbe interactions (eds.) T. Kosuge and E. W. Nester (New York: MacMillan) vol. 1, pp. 265–306Google Scholar
  51. Long S. R., Buikema W. and Ausubel F. M. 1982 Cloning ofRhizobium meliloti nodulation genes by direct complementation of Nod- mutants.Nature (London) 298: 485–488CrossRefGoogle Scholar
  52. Long S., McCune S. and Walker G. C. 1988a Symbiotic loci ofRhizobium meliloti identified by random TnphoA mutagenesis.J. Bacteriol. 170: 4257–4265sPubMedGoogle Scholar
  53. Long S., Reed J. W., Himawan J. and Walker G. C. 1988b Genetic analysis of a cluster of genes required for synthesis of the calcofluor-binding exopolysaccharide ofRhizobium meliloti.J. Bacteriol. 170: 4239–4248PubMedGoogle Scholar
  54. Meade H. M., Long S. R., Ruvkun G. B., Brown S. E. and Ausubel F. M. 1982 Physical and genetic characterization of symbiotic and auxotrophic mutants ofRhizobium meliloti induced by transposon Tn5 mutagenesis.J. Bacterial. 149: 114–122Google Scholar
  55. Muller P., Hynes M., Kapp D., Niehaus K. and Pühler A. 1988 Two classes ofRhizobium meliloti infection mutants differing in exopolysaccharide production and in coinoculation properties with nodulation mutants.Mol. Gen. Genet. 211: 17–26CrossRefGoogle Scholar
  56. Newcomb W. 1981 Nodule morphogenesis and differentiation.,Int. Rev. Cytol. suppl. 12, pp. 247–298Google Scholar
  57. Noel K. D., VandenBosch K. A. and Kulpaca B. 1986 Mutations inRhizobium phaseoli that lead to arrested development of infection threads.J. Bacteriol. 168: 1392–1401PubMedGoogle Scholar
  58. Parke D., Rivelli M. and Ornston L. N. 1985 Chemotaxis to aromatic and hydroaromatic acids: comparison ofBradyrhizobium japonicum andRhizobium trifolii.J. Bacteriol. 163: 417–422PubMedGoogle Scholar
  59. Putnoky P., Grosskopf E., Camtta D. T., Kiss G. B. and Kondorosi A. 1988Rhizobium fix genes mediate at least two communication steps in symbiotic nodule development.J. Cell Biol. 106: 597–607PubMedCrossRefGoogle Scholar
  60. Putnoky P. and Kondorosi A. 1986 Two gene clusters ofRhizobium meliloti code for early essential nodulation functions and a third influences nodulation.J. Bacteriol. 167: 881–887PubMedGoogle Scholar
  61. Reeves P. 1979 The genetics of outer membrane proteins. InBacterial outer membranes (eds) M. Inouye (New York: John Wiley and Sons) pp. 255–291Google Scholar
  62. Renalier ML, Daveran M.-H., Batut J., Ghai J., Terzaghi B., Gherardi M., David M., Garnevone A. M., Vasse J., Truchet G., Higuet T. and Boistard P. 1987 A new symbiotic cluster on the pSym megaplasmid ofRhizobium meliloti 2011 carries a functionalfix gene repeat and anod locus.J. Bacteriol. 169: 2231–2238PubMedGoogle Scholar
  63. Ronson C. W., Nixon B. T., Albright L. M. and Ausubel F. M. 1987Rhizobium meliloti ntrA (rpoN) gene is required for diverse metabolic functions.J. Bacteriol. 169: 2424–2431PubMedGoogle Scholar
  64. Ruvkun G. B., Sundaresan V. and Ausubel F. M. 1982 Directed transposon Tn5 mutagenesis and complementation analysis ofRhizobium meliloti symbiotic nitrogen fixation genes.Cell 29: 551–559PubMedCrossRefGoogle Scholar
  65. Schmidt J., Wingender R., John M., Wieneke U. and Schell J. 1988Rhizobium meliloti nod A andnodB genes are involved in generating compounds that stimulate mitosis of plant cells.Proc. Nail. Acad. Sci. USA 85: 8578–8582CrossRefGoogle Scholar
  66. Schwartz M. 1987 The maltose regulon. InEscherichia coli and Salmonella lyphimurium: Cellular add molecular biology. (eds.) F. C. Neidhardt, J. L. Ingraham, K. B. Low, B. Magasanik, M. Schaechter and H. E. Umbarger (Washington, D.C.: American Society for Microbiology) vol. 2, pp. 1482–1502Google Scholar
  67. Selvaraj G. and Iyer V. N. 1983 Suicide plasmid vehicles for insertion mutagenesis inRhizobium meliloti and related bacteria.J. Bacteriol. 156: 1292–1300PubMedGoogle Scholar
  68. Sikka V. K. and Kumar S. 1984 Underexpression of Ap from R-plasmids in fast-growingRhizobium species.Appl. Environ. Microbiol. 48: 1248–1250PubMedGoogle Scholar
  69. Spaink H. P., Wijffelman C. A., Pees E., Okker R. J. H. and Lugtenberg B. J. J. 1987Rhizobium nodulation genenodD as a determinant of host specificity.Nature (London) 328: 337–340CrossRefGoogle Scholar
  70. Stowers M. D. 1985 Carbon metabolism inRhizobium species.Annu. Rev. Microbiol. 39: 89–108PubMedCrossRefGoogle Scholar
  71. Szeto W. W., Nixon B. T, Ronson C. W. and Ausubel F. M. 1987 Identification and characterization of theRhizobium meliloti ntrC gene:R. meliloti has separate regulatory pathways for activating nitrogen fixation genes in free-living and symbiotic cells.J. Bacteriol. 169: 1423–1432PubMedGoogle Scholar
  72. Szeto W. W., Zimmerman J. L., Sundaresan V. and Ausubel F. M. 1984 ARhizobium meliloti symbiotic regulatory gene.Cell 36: 1035–1043PubMedCrossRefGoogle Scholar
  73. Truchet G., Michel M. and Dénarié J. 1980 Sequential analysis of the organogenesis of lucerne (Medicago sativa) root nodules using symbiotically defective mutants ofRhizobium meliloti.Differentiation 16: 163–173CrossRefGoogle Scholar
  74. Truchet G., Rosenberg C, Vasse J., Julliot J. S., Gamut S. and Dénarié J. 1984 Transfer ofRhizobium meliloti Sym genes intoAgrobacterium tumefaciens: host-specific nodulation by atypical infection.J. Bacteriol. 157: 134–142PubMedGoogle Scholar
  75. Vasse J. M. and Truchet G. L. 1984 TheRhizobium-legume symbiosis: observation of root infection by bright-field microscopy after staining with methylene blue.Planta 161: 487–489CrossRefGoogle Scholar
  76. Vincent J. M. 1980 Factors controlling the legume-Rhizobium symbiosis. InNitrogen fixation, Vol. II: Symbiotic associations and cyanobacteria (eds.) W. E. Newton and W. H. Orme Johnson (Baltimore: University Park Press) pp. 103–109Google Scholar
  77. Wayne R. and Neilands J. B. 1975 Evidence for common binding sites for ferrichrome compounds and bacteriophage 80 in the cell envelope ofEscherichia coli.J. Bacteriol. 121: 497–503PubMedGoogle Scholar
  78. Weber G., Aguilar O. M., Gronemeier B., Reilander H. and Pühler A. 1985 Genetic analysis of symbiotic genes ofRhizobium meliloti: mapping and regulation of nitrogen fixation genes. InAdvances in the molecular genetics of the bacteria-plant interaction (eds.) A. A. Szalay and R. P. Legocki (New York: Media Services, Cornell University) pp, 13–15Google Scholar

Copyright information

© Indian Academy of Sciences 1989

Authors and Affiliations

  • S. P. S. Khanuja
    • 1
  • Sushil Kumar
    • 1
  1. 1.Biotechnology CentreIndian Agricultural Research InstituteNew DelhiIndia

Personalised recommendations