Statistical Papers

, Volume 37, Issue 2, pp 95–104 | Cite as

A note on the nonparametric test based on theL 1-version of the Cramér-von Mises statistic

  • Jutta Arrenberg


We consider the test based on theL 1-version of the Cramér-von Mises statistic for the nonparametric two-sample problem. Some quantiles of the exact distribution under H0 of the test statistic are computed for small sample sizes. We compare the test in terms of power against general alternatives to other two-sample tests, namely the Wilcoxon rank sum test, the Smirnov test and the Cramér-von Mises test in the case of unbalanced small sample sizes. The computation of the power is rather complicated when the sample sizes are unequal. Using Monte Carlo power estimates it turns out that the Smirnov test is more sensitive to non stochastically ordered alternatives than the new test. And under location-contamination alternatives the power estimates of the new test and of the competing tests are equal.


Smirnov Test Null Distribution Statistical Paper General Alternative Mise Statistic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, T. W., (1962), On the distribution of the two-sample Cramér-von Mises criterion.Annals of Math. Statist. 33, 1148–1159.CrossRefzbMATHGoogle Scholar
  2. Arrenberg, J., (1994), Natural ranks in the conditional Wilcoxon rank sum test.Computational Statistics & Data Analysis 17, 141–152.CrossRefMathSciNetzbMATHGoogle Scholar
  3. Büning, H., (1991),Robuste und adaptive Tests. Walter de Gruyter, Berlin, New York.zbMATHGoogle Scholar
  4. Büning, H. andTrenkler, G., (1994),Nichtparametrische Statistische Methoden. Walter de Gruyter, Berlin, New York.zbMATHGoogle Scholar
  5. Gibbons, J. D., (1992),Nonparametric Statistical Inference, 3rd edition. Marcel Dekker, New York.zbMATHGoogle Scholar
  6. Gilman, L. and Rose, A. J., (1984),APL—An Interactive Approach, 3rd edition. John Wiley & Sons, Inc.Google Scholar
  7. Huesler, J. andRiedwyl, H., (1988), Nonparametric Location Tests Based on the Empirical Distribution.Biom. Journal 6, 705–714.MathSciNetGoogle Scholar
  8. Lehmann, E. L., (1975),Nonparametric methods based on ranks. Holden-Day, San Francisco.Google Scholar
  9. Lehmann, E. L., (1986),Testing statistical hypotheses, 2nd edition. John Wiley & Sons, Inc.Google Scholar
  10. Pokropp, F., (1992), A note on conditional Wilcoxon tests with natural and mid-ranks.Statistical Papers 33, 367–370.CrossRefMathSciNetzbMATHGoogle Scholar
  11. Schmid, F. and Trede, M., (1994), A distribution free test for the two sample problem for general alternatives. To appear inComputational Statistics & Data Analysis.Google Scholar
  12. Streitberg, B. and Röhmel, J., (1983), Exakte Verteilungen für Rang- und Randomisierungstests im allgemeinenc-Stichprobenproblem. Tagung der Int. Biom. Soc., Sektion Deutschland, März 1983.Google Scholar
  13. Streitberg, B. and Röhmel, J., (1984), Exact nonparametrics in APL. Proceedings of the APL-Conference 1984 in Helsinki, 313–325.Google Scholar
  14. Wetherill, G. B., (1960), The Wilcoxon Test and Non-null Hypotheses.J. Roy. Statist. Soc., B 27, 402–418.MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • Jutta Arrenberg
    • 1
  1. 1.Universität der Bundeswehr HamburgHamburg

Personalised recommendations