Statistical Papers

, 32:299 | Cite as

Skewness, kurtosis, and black-scholes option mispricing

  • R. Geske
  • W. Torous


The Black-Scholes option pricing model assumes that (instantaneous) common stock returns are normally distributed. However, the observed distribution exhibits deviations from normality; in particular skewness and kurtosis. We attribute these deviations to gross data errors. Using options' transactions data, we establish that the sample standard deviation, sample skewness, and sample kurtosis contribute to the Black-Scholes model's observed mispricing of a sample from the Berkeley Options Data Base of 2323 call options written on 88 common stocks paying no dividends during the options'life. Following Huber's statement that the primary case for robust statistics is when the shape of the observed distribution deviates slightly from the assumed distribution (usually the Gaussian), we show that robust volatility estimators eliminate the mispricing with respect to sample skewness and sample kurtosis, and significantly improve the Black-Scholes model's pricing performance with respect to estimated volatility.


  1. Ball, C. andTorous, W. (1984): «The Maximum Likelihood Estimation of Security Price Volatility; Theory, Evidence, and Application to Option Pricing”, Journal of Business, 57, 97–112.CrossRefGoogle Scholar
  2. Beckers, S. (1981): «A note on Estimating the Parameters of a Diffusion-Jump Model of Stock Returns”, Journal of Financial and quantitative Analysis, 36, 127–140.CrossRefGoogle Scholar
  3. Bhattacharya, M. (1983): «Transactions Data Tests of Efficiency of the Chicago Board Options Exchange”, Journal of Financial Economics 12, 161–185.CrossRefGoogle Scholar
  4. Bickel, P. andK. Doksum (1977): Mathematical Statistics (Holden-Day, Oakland, California).MATHGoogle Scholar
  5. Black, F. andM. Scholes (1972): «The Valuation of Option Contracts and a Test of Market Efficiency”, Journal of Finance 27, 399–417.CrossRefGoogle Scholar
  6. Black, F. andM. Scholes (1973): «The Pricing of Option Contracts and Corporate Liabilities”, Journal of Political Economy 81, 637–654.CrossRefGoogle Scholar
  7. Black, F. (1976): “Studies of Stock Price Volatility Changes”, Proceedings of the Journal of American Statistical Association, 177–181.Google Scholar
  8. Boyle, P. andAnanthanarayanan, A.L. (1977): «The Impact of Variance Estimation in Option Valuation Models”, Journal of Financial Economics, 5, 375–388.CrossRefGoogle Scholar
  9. Cox, J. (1975): “Notes on Constant Elasticity of Variance Option Pricing”, unpublished manuscript (Stanford University, Stanford, California).Google Scholar
  10. Cox, J. andS. Ross (1976): «The Valuation of Options for Alternative Stochastic Processes”, Journal of Financial Economics, 3, 145–166.CrossRefGoogle Scholar
  11. Fama, E. (1965): «The Behavior of Stock Market Prices”, Journal of Business 38, 34–105.CrossRefGoogle Scholar
  12. Galai, D. (1977): «Tests of Market Efficiency of the Chicago Board Options Exchange”, Journal of Business, 50, 167–197.CrossRefGoogle Scholar
  13. Garman, M. andM. Klass (1980): «On the Estimation of Security Price Volatilities from Historical Data”, Journal of Business 53, 67–78.CrossRefGoogle Scholar
  14. Geske, R. (1979): «The Valuation of Compound Options”, Journal of Financial Economics, 7, 63–81.CrossRefGoogle Scholar
  15. Geske, R. andR. Roll (1984): “Isolating the Observed Biases in American Call Option Pricing: An Alternative Variance Estimator”, unpublished manuscript (University of California, Los Angeles).Google Scholar
  16. Huber, P. (1977): Robust Statistical Procedures (SIAM, Philadelphia).MATHGoogle Scholar
  17. Huber, P. (1981): Robust Statistics, John Wiley and Sons, New York.MATHGoogle Scholar
  18. Latane, H. andRendleman, R. (1976): «Standard Deviations of Stock Price Ratios Implied in Option Prices”, Journal of Finance, 31, 369–382.CrossRefGoogle Scholar
  19. Lax, D. (1985): «Robust Estimators of Scale: Finite-Sample Performance in Long-Tailed Symmetric Distributions”, Journal of the American Statistical Association, 80, 736–741.CrossRefGoogle Scholar
  20. MacBeth, J. andMerville, L. (1979): «An Empirical Examination of the Black-Scholes Call Option Pricing Model”, Journal of Finance, 34, 1173–1186.CrossRefGoogle Scholar
  21. Merton, R.C. (1976): «Options Pricing When Underlying Returns are Discontinuous”, Journal of Financial Economics, 3, 126–145.CrossRefGoogle Scholar
  22. Parkinson, M. (1980): «The Extreme Value Method for Estimating the Variance of the Rate of Return”, Journal of Business 53, 61–65.CrossRefGoogle Scholar
  23. Press, S.J. (1967): «A Compound Events Model for Security Prices”, Journal of Business 40, 317–335.CrossRefGoogle Scholar
  24. Rogalski, R. (1978): «Variances and Option Prices in Theory and Practice”, Journal For Portfolio Management, 4, 43–51.CrossRefGoogle Scholar
  25. Rosenberg, B. (1972): “The Behavior of Random Variables with Nonstationary Variance and the Distribution of Security Prices”, unpublished manuscript (University of California, Berkeley).Google Scholar
  26. Rubinstein, M. (1983): «Displaced Diffusion Option Pricing”, Journal of Finance 38, 213–217.CrossRefGoogle Scholar
  27. Rubinstein, M. (1985): «Nonparametric Tests of Alternative Option Pricing Models Using All Reported Trades and Quotes on the 30 most active CBOE Option Classes from August 23, 1976 through August 31, 1978”, Journal of Finance 40, 455–480.CrossRefGoogle Scholar
  28. Tukey, J. (1960): “A Survey of Sampling from Contaminated Distributions”, in Contributions to Probability and Statistics (Stanford University Press, Stanford, California).Google Scholar
  29. Whaley, R. (1981): «On the Valuation of American Call Options On Stock with Known Dividends”, Journal of Financial Economics, 9, 207–212.CrossRefGoogle Scholar
  30. Wichman, B. andI. Hill (1982): «An Efficient and Portable Pseudo-Random Number Generator”, Applied Statistics 311, 188–190.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • R. Geske
    • 1
  • W. Torous
    • 1
  1. 1.Anderson Graduate School of ManagementUCLALos AngelesU.S.A.

Personalised recommendations