Statistical Papers

, Volume 33, Issue 1, pp 21–29 | Cite as

A procedure for stepwise regression analysis

  • T. Johnsson
Articles

Abstract

A procedure for stepwise regression analysis for the non-experimental case is suggested. Regarding the problem as a multiple inference one, the procedure picks out the relevant regressors and, based on a slightly new approach, estimates the structure of dependencies among the variables involved.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Butler, R.W. (1984): The significance Attained by the Best-Fitting Regressor Variable, JASA 79, 341–348.MATHMathSciNetGoogle Scholar
  2. Diehr, G. andHoflin, D.R. (1974): Approximating the Distribution of the Sample R2 in Best Subset Regressions, Technometrics 16, 317–320.MATHCrossRefGoogle Scholar
  3. Draper, N.R., Guttman, I. andKanemasu, H. (1971): The distribution of certain regression statistics, Biometrika 58, 295–298.MATHCrossRefMathSciNetGoogle Scholar
  4. Draper, N.R., Guttman, I. andLapczak, L. (1979): Actual Rejection Levels in a Certain Stepwise Test, Commun. in Statist. A8, 99–105.CrossRefGoogle Scholar
  5. Efroymson, M.A. (1960): “Multiple Regression Analysis” in Mathematical Methods for Digital Computers, eds. Rolston and H.S. Wilf, New York: John Wiley.Google Scholar
  6. Hocking, R.R. (1976): The Analysis and Selection of Variables in Linear Regression, Biometrics 32, 1–49.MATHCrossRefMathSciNetGoogle Scholar
  7. Hocking, R.R. (1983): Developments in linear regression methodology: 1959–1982, Technometrics 25, 219–230.MATHCrossRefMathSciNetGoogle Scholar
  8. Holm, S. (1977): Sequentially rejective multiple test procedures, Statistical Research Report 1977-1, University of Umeå, Institute of Mathematics & Statistics.Google Scholar
  9. Johnsson, T. (1989): A procedure for stepwise regressionanalysis, Research Report 1989:1, University of Göteborg, Department of Statistics.Google Scholar
  10. Marcus, R., Peritz, E. andGabriel, K.R. (1976): On closed testing procedures with special reference to ordered analysis of variance, Biometrika 63, 655–660.MATHCrossRefMathSciNetGoogle Scholar
  11. McIntyre, S.H., Montgomery, D.B., Srinivasan, V. andWeitz, B.A. (1983): Evaluating the Statistical Significance of Models Developed by Stepwise Regression, Journal of Marketing Research 20, 1–11.CrossRefGoogle Scholar
  12. Miller, A.J. (1984): Selection of Subsets of Regression Variables, JRSS-A 147, 389–425.MATHGoogle Scholar
  13. Miller, R.G. Jr (1980): Simultaneous Statistical Inference, 2nd ed., Springer Verlag, New York.Google Scholar
  14. Pinsker, I.S., Kipnis, V. and Grechanovsky, E. (1985): The Use of F-statistic in Forward Selection Regression Algorithm, Proc. Statist. Comput. Sec., ASA 419–423.Google Scholar
  15. Pope, P.T. andWebster, J.T. (1972): The use of An F-statistic in Stepwise Regression Procedures, Technometrics 14, 327–340.MATHCrossRefGoogle Scholar
  16. Rencher, A.C. andPun, F.C. (1980): Inflation of R2 in Best Subset Regression, Technometrics 22, 49–53.MATHCrossRefGoogle Scholar
  17. Thompson, M.L. (1978): Selection of Variables in Multiple Regression: Part I. A review and evaluation, Part II. Chosen procedures, computations and examples, Inst. Stat. Rev. 46, 1–19 and 129–146.MATHCrossRefGoogle Scholar
  18. Wilkinson, L. (1979): Tests of Significance in Stepwise Regression, Psychological Bulletin 86, 168–174.CrossRefGoogle Scholar
  19. Wilkinson, L. andDallal, G.E. (1981): Tests os Significance in Forward Selection Regression with an F-to-Enter Stopping Rule, Technometrics 23, 377–380.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • T. Johnsson
    • 1
  1. 1.Department of StatisticsUniversity of GöteborgGöteborgSweden

Personalised recommendations