Advertisement

Sign and geometric meaning of curvature

  • M. Gromov
Conferenze

Summary

This is an expanded version of my «Lezione Leonardesca» given in Milano in June 1990. I try to reveal to non-initiates the inner working of the Riemannian geometry by following the tracks of relatively few ideas from the very bottom to the top of the edifice.

Keywords

Riemannian Manifold Sectional Curvature Fundamental Form Geometric Meaning Principal Curvature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Sunto

Questa monografia è una versione estesa di una mia Conferenza tenuta in Milano nell'ambito delle Lezioni Leonardesche. E' un tentativo di rivelare ai non iniziati il meccanismo di sviluppo della geometria Riemanniana seguendo le tracce di relativamente poche idee dalle fondamenta al tetto dell'edificio.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Ber]1 Berger M., Rauch H. E.,Géomètre différentiel, in Differential Geometry and Complex Analysis, p.p. 1–14, Springer Verlag, 1985.Google Scholar
  2. [Ber]2 Berger M.,La géométrie métrique des variétés Riemanniennes, in Astérisque, hors serie, p.p. 9–66, Soc. Math. de France, 1985.Google Scholar
  3. [Bes]Besse A.,Einstein manifolds, Springer Verlag, 1987.Google Scholar
  4. [B-G-P]Burago Yu., Gromov M. andPerelman G.,A. D. Alexandrov's spaces with curvatures bounded from below I. Preprint.Google Scholar
  5. [B-G-S]Ballmann W., Gromov M. andSchroeder V.,Manifolds of nonpositive curvature, Progress in Math. Vol. 61, Birkhäuser, Boston. 1985.zbMATHGoogle Scholar
  6. [Bou]Bourguignon J.-P.,L'équation de la chaleur associée à la courbure de Ricci (d'après R. S. Hamilton) in Astérisque 145–146, p.p. 45–63, Soc. Math. de France, 1987.Google Scholar
  7. [Bu-Ka]Buser P., Karcher H.,Gromov's almost flat manifolds, Astérisque 81, Soc. Math. France, 1981.Google Scholar
  8. [Bu-Za]Burago Yu., Zalgaller V.,Geometric inequalities, Springer Verlag, 1988.Google Scholar
  9. [Che]Cheeger J.,Critical points of distance functions and applications to geometry C.I.M.E., June 1990 session at Montecatini, to appear in Lecture Notes in Math., Springer.Google Scholar
  10. [Ch-Eb]Cheeger J., Eben D.,Comparison theorems in Riemannian geometry, North Holland, 1975.Google Scholar
  11. [Cor]Corlette K.,Flat G-bundles with canonical metrics J. Diff. Geom. 28 (1988), p.p. 361–382.MathSciNetzbMATHGoogle Scholar
  12. [E-L]1 Eells J. andLemaire L.,A report on harmonic maps, Bull Lond. Math. Soc. 10 (1978), p.p. 1–68.CrossRefMathSciNetzbMATHGoogle Scholar
  13. [E-L]2 Eells J. andLemaire L.,Another report on harmonic maps, Bull. Lond. Math. Soc. 20 (1988), p.p. 385–524.CrossRefMathSciNetzbMATHGoogle Scholar
  14. [Esch]Eschenburg J.,Local convexity and non-negative curvature-Gromov's proof of the sphere theorem, Inv. Math. 84 (1986), n. 3, p.p. 507–522.CrossRefMathSciNetzbMATHGoogle Scholar
  15. [F-K-M]Ferus D., Karcher H., Münzner H.,Cliffordalgebren und neue isoparametrische Hyperflächen, Math. Z. 177 (1981) p.p. 479–502.CrossRefMathSciNetzbMATHGoogle Scholar
  16. [Gal]Gallot S.,Isoperimetric inequalities based on integral norms of Ricci curvature in Astérisque 157–158 p.p. 191–217, Soc. Math. de France, 1988.Google Scholar
  17. [Gh-Ha]Ghys E., de la Harpe, eds.,Sur les Groupes Hyperboliques d'après Mikhael Gromov, Birkhäuser, 1990.Google Scholar
  18. [Gro]Gromov M.,Partial differential relations, Springer Verlag, 1986.Google Scholar
  19. [Gro]1 Gromov M.,Dimension, non-linear spectra and width, Geometric aspects of Functional Analysis, J. Lindenstrauss and V. Milman eds., in Lecture Notes in Math. 1317, p.p. 132–185, Springer Verlag, 1988.Google Scholar
  20. [Gro]2 Gromov M.,Large Riemannian manifolds, in Curvature and Topology, Shiohama et al eds., Lect. Notes in Math. 1201 (1986), p.p. 108–122, Springer Verlag.Google Scholar
  21. [Gro]3 Gromov M.,Synthetic geometry of Riemannian manifolds, Proc. ICM-1978 in Helsinki, Vol. 1, p.p. 415–419.Google Scholar
  22. [G-Pa]Gromov M., Pansu P.,Rigidity of discrete groups, an introduction, C.I.M.E. session in June 1990 at Montecatini, to appear in Lecture notes in Math. Springer-Verlag.Google Scholar
  23. [G-L-P]Gromov M., Lafontaine J. andPansu P.,Structures métriques pour les variétés Riemanniennes, Texte Math. n. 1, CEDIC-Nathan, Paris, 1981.zbMATHGoogle Scholar
  24. [Kaz]Kazdan J.,Gaussian and scalar curvature, an update in Seminar on Differential Geometry, Yau ed., p.p. 185–193, Ann of Math. Studies 102, Princeton, 1982.Google Scholar
  25. [Law]Lawson B.,Lectures on minimal submanifolds, Publish or Perish Inc., 1980.Google Scholar
  26. [La-Mi]Lawson B., Michelsohn M.-L.,Spin Geometry, Princeton University Press, 1989.Google Scholar
  27. [Mil]Milnor J.,Morse theory, Ann. Math. St. 51, Princeton, 1963.Google Scholar
  28. [Miln]Milnor T.,Efimov's theorem about complete immersed surfaces of negative curvature, Adv. Math. 8 (1972), p.p. 474–543.CrossRefMathSciNetzbMATHGoogle Scholar
  29. [M-M]Micallef M., Moore J.,Minimal two-spheres and the topology of manifolds with positive curvature on totally isotropic two-planes, Ann. of Math. 127: 1 (1988) p.p. 199–227.CrossRefMathSciNetGoogle Scholar
  30. [Mi-S]Milman V., Schechtman G. Asymptotic theory of finite dimensional normed spaces, Lecture Notes in Math. 1200, Springer Verlag, 1986.Google Scholar
  31. [Sch]Schoen K.,Minimal surfaces and positive scalar curvature, Proc. ICM-1983, Warszawa, p.p. 575–579 (1984) North-Holland.Google Scholar
  32. [Str]Strichartz R.,Sub-Riemannian geometry, Journ. of Diff. Geom. 24: 2 (1986) p.p. 221–263.MathSciNetGoogle Scholar

Copyright information

© Birkhäuser-Verlag 1991

Authors and Affiliations

  • M. Gromov

There are no affiliations available

Personalised recommendations