Journal of Genetics

, 78:99 | Cite as

Genetic variation at twentythree microsatellite loci in sixteen human populations

  • Ranjan Deka
  • Mark D. Shriver
  • Ling Mei Yu
  • Elisa Mueller Heidreich
  • Li Jin
  • Yixi Zhong
  • Stephen T. Mcgarvey
  • Shyam Swarup Agarwal
  • Clareann H. Bunker
  • Tetsuro Miki
  • Joachim Hundrieser
  • Shih-Jiun Yin
  • Salmo Raskin
  • Ramiro Barrantes
  • Robert E. Ferrell
  • Ranajit Chakraborty
Article

Abstract

We have analysed genetic variation at 23 microsatellite loci in a global sample of 16 ethnically and geographically diverse human populations. On the basis of their ancestral heritage and geographic locations, the studied populations can be divided into five major groups, viz. African, Caucasian, Asian Mongoloid, American Indian and Pacific Islander. With respect to the distribution of alleles at the 23 loci, large variability exists among the examined populations. However, with the exception of the American Indians and the Pacific Islanders, populations within a continental group show a greater degree of similarity. Phylogenetic analyses based on allele frequencies at the examined loci show that the first split of the present-day human populations had occurred between the Africans and all of the non-African populations, lending support to an African origin of modern human populations. Gene diversity analyses show that the coefficient of gene diversity estimated from the 23 loci is, in general, larger for populations that have remained isolated and probably of smaller effective sizes, such as the American Indians and the Pacific Islanders. These analyses also demonstrate that the component of total gene diversity, which is attributed to variation between groups of populations, is significantly larger than that among populations within each group. The empirical data presented in this work and their analyses reaffirm that evolutionary histories and the extent of genetic variation among human populations can be studied using microsatellite loci.

Keywords

microsatellite loci genetic variation gene diversity human populations 

References

  1. Barbujani G., Magagni A., Minch E. and Cavalli-Sforza L. L. 1997 An apportionment of human DNA diversity.Proc. Natl. Acad. Sci. USA 94, 4516–4519.PubMedCrossRefGoogle Scholar
  2. Barrantes R., Smouse P. E., Mohrenweiser H. W., Gershowitz H., Azofeifa J., Arias T. D. and Neel J. V. 1990 Microevolution in lower central America: genetic characterization of the Chibchaspeaking groups of Costa Rica and Panama, and a consensus taxonomy based on genetic and linguistic affinity.Am. J. Hum. Genet. 46, 63–84.PubMedGoogle Scholar
  3. Bowcock A. M., Ruiz-Linares A., Tomfohrde J., Minch E., Kidd J. R. and Cavalli-Sforza L. L. 1994 High resolution of human evolutionary trees with polymorphic microsatellites.Nature 368, 455–457.PubMedCrossRefGoogle Scholar
  4. Calafell E, Shuster A., Speed W. C., Kidd J. R. and Kidd K. K. 1998 Short tandem repeat polymorphism evolution in humans.Eur. J. Hum. Genet. 6, 38–49.PubMedCrossRefGoogle Scholar
  5. Cann R. L., Sotneking M. and Wilson A. C. 1987 Mitochondrial DNA and human evolution.Nature 325, 548–553.CrossRefGoogle Scholar
  6. Chakraborty R. 1980 Gene-diversity analysis in nested subdivided populations.Genetics 96, 721–723.Google Scholar
  7. Chakraborty R. and Jin L. 1993 Determination of relatedness between individuals by DNA fingerprinting.Hum. Biol. 65, 875–895.PubMedGoogle Scholar
  8. Chakraborty R., Kimmel M., Stivers D. N., Davison L. J. and Deka R. 1997 Relative mutation rates at di-, tri-, and tetranucleotide microsatellite loci.Proc. Natl. Acad. Sci. USA 94, 1041–1046.PubMedCrossRefGoogle Scholar
  9. Deka R., Shriver M. D., Yu L. M., Jin L., Aston C. E., Chakraborty R. and Ferrell R. E. 1994 Conservation of human chromosome 13 polymorphic microsatellite (CA)n repeats in chimpanzees.Genomics 22, 226–230.PubMedCrossRefGoogle Scholar
  10. Deka R., Jin L., Shriver M. D., Yu L. M., DeCroo S., Hundrieser J., Bunker C. H., Ferrell R. E. and Chakraborty R. 1995a Population genetics of dinucleotide (dC-dA)n.(dG-dT)n polymorphisms in world populations.Am. J. Hum. Genet. 56, 461–474.PubMedGoogle Scholar
  11. Deka R., Shriver M. D., Yu L. M., Ferrell R. E. and Chakraborty R. 1995b Intra- and inter-population diversity at short tandem repeat loci in diverse populations of the world.Electrophoresis 16, 1659–1664.PubMedCrossRefGoogle Scholar
  12. Deka R., Shriver M. D., Jin L., Yu L. M., Ferrell R. E. and Chakraborty R. 1998 Tracing the origin of modern humans using nuclear microsatellite polymorphisms. InThe origins and past of modern humans—towards reconciliation (ed. K. Omoto and P. V. Tobias), pp. 3–15. World Scientific, Singapore.Google Scholar
  13. Di Rienzo A., Peterson A. C., Garza J. C., Valdes A. M., Slatkin M. and Freimer N. B. 1994 Mutational processes of simplesequence repeat loci in human populations.Proc. Natl. Acad. Sci. USA 91, 3166–3170.PubMedCrossRefGoogle Scholar
  14. Jin L. and Chakraborty R. 1995 Population structure, stepwise mutations, heterozygote deficiency and their implications in DNA forensics.Heredity 74, 274–285.PubMedCrossRefGoogle Scholar
  15. Jorde L. B., Bamshad M. J., Watkins W. S., Zenger R., Fraley A. E., Krakowiak P. A., Carpenter K. D., Soodyal H., Jenkins T. and Rogers A. R. 1995 Origins and affinities of modern humans: a comparison of mitochondrial and nuclear genetic data.Am. J. Hum. Genet. 57, 523–538.PubMedGoogle Scholar
  16. Kimmel M. and Chakraborty R. 1996 Measures of variation at DNA repeat loci under a general stepwise mutation model.Theor. Pop. Biol. 50, 345–367.CrossRefGoogle Scholar
  17. Kimmel M., Chakraborty R., Stivers D. N. and Deka R. 1996 Dynamics of repeat polymorphisms under a forward-backward mutation model: within- and between-population variability at microsatellite loci.Genetics 143, 549–555.PubMedGoogle Scholar
  18. Kimmel M., Chakraborty R., King J. P., Bamshad M., Watkins W. S. and Jorde L. B. 1998 Signature of population expansion in microsatellite repeat data.Genetics 148, 1921–1930.PubMedGoogle Scholar
  19. Li C. C. 1976First course in population genetics. Boxwood, Pacific Grove, USA.Google Scholar
  20. Livshits G. and Nei M. 1990 Relationship between intrapopulational and interpopulational genetic diversity in man.Ann. Hum. Biol. 17, 501–513.PubMedCrossRefGoogle Scholar
  21. Nei M. 1973 Analysis of gene diversity in subdivided populations.Proc. Natl. Acad. Sci. USA 70, 3321–3323.PubMedCrossRefGoogle Scholar
  22. Nei M. 1995 Genetic support for the out-of-Africa theory of human evolution.Proc. Natl. Acad. Sci. USA 92, 6720–6722.PubMedCrossRefGoogle Scholar
  23. Nei M. and Chakravarti A. 1977 Drift variances ofFst andGst statistics obtained from a finite number of isolated populations.Theor. Pop. Biol. 11, 307–325.CrossRefGoogle Scholar
  24. Nei M. and Roychoudhury A. K. 1993 Evolutionary relationships of human populations on a global scale.Mol. Biol. Evol. 10, 927–943.PubMedGoogle Scholar
  25. Nei M. and Takezaki N. 1996 The root of the phylogenetic tree of human populations.Mol. Biol. Evol. 13, 170–177.PubMedGoogle Scholar
  26. Nei M., Tajima F. and Tateno Y. 1983 Accuracy of estimated phylogenetic trees from molecular data.J. Mol. Evol. 19, 153–170.PubMedCrossRefGoogle Scholar
  27. Perez-Lezaun A., Calafell E., Mateu E., Comas D., Ruiz-Pacheco R. and Bertranpetit J. 1997 Microsatellite variation and the differentiation of modern humans.Hum. Genet. 99, 1–7.PubMedCrossRefGoogle Scholar
  28. Polymeropoulos M. H., Rath D. S., Xiao H. and Merril C. R. 1991 Dinucleotide repeat polymorphism at the human fms-related tyrosine kinase gene (FLT1).Nucl. Acids Res. 19, 2803.PubMedCrossRefGoogle Scholar
  29. Rao B. K., Sil S. B. and Majumder P. P. 1997 How useful are microsatellite loci in recovering short-term evolutionary history?J. Genet. 76, 181–188.CrossRefGoogle Scholar
  30. Saitou N. and Nei M. 1987 The neighbor-joining method: a new method for reconstructing phylogenetic trees.Mol. Biol. Evol. 4, 406–425.PubMedGoogle Scholar
  31. Shriver M. D., Jin L., Chakraborty R. and Boerwinkle E. 1993 VNTR allele frequency distributions under the stepwise mutation model: A computer simulation approach.Genetics 134, 983–993.PubMedGoogle Scholar
  32. Shriver M. D., Jin L., Boerwinkle E., Deka R., Ferrell R. E. and Chakraborty R. 1995 A novel measure of genetic distance for highly polymorphic tandem repeat loci.Mol. Biol. Evol. 12, 914–920.PubMedGoogle Scholar
  33. Shriver M. D., Jin L., Ferrell R. E. and Deka R. 1997 Microsatellite data support an early population expansion in Africa.Genome Res. 7, 586–591.PubMedGoogle Scholar
  34. Sokal R. R. and Rohlf F. J. 1981Biometry, 2nd edition, p. 448. Freeman, New York.Google Scholar
  35. Takezaki N. and Nei M. 1996 Genetic distances and reconstruction of phylogenetic trees from microsatellite DNA.Genetics 144, 389–399.PubMedGoogle Scholar
  36. Tishkoff S. A., Dietzsch E., Speed W., Pakstis A. J., Kidd J. R., Cheung K., Bonné-Tamir B., Santachiara-Benerecetti A. S., Moral P., Krings M., Pääbo S., Watson E., Risch N., Jenkins T. and Kidd K. K. 1996 Global patterns of linkage disequilibrium at the CD4 locus and modern human origins.Science 271, 1380–1387.PubMedCrossRefGoogle Scholar
  37. Weber J. L. and Wong C. 1993 Mutation of human short tandem repeats.Hum. Mol. Genet. 2, 1123–1128.PubMedCrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 1999

Authors and Affiliations

  • Ranjan Deka
    • 1
  • Mark D. Shriver
    • 2
  • Ling Mei Yu
    • 3
  • Elisa Mueller Heidreich
    • 3
  • Li Jin
    • 4
  • Yixi Zhong
    • 4
  • Stephen T. Mcgarvey
    • 5
  • Shyam Swarup Agarwal
    • 6
  • Clareann H. Bunker
    • 7
  • Tetsuro Miki
    • 8
  • Joachim Hundrieser
    • 9
  • Shih-Jiun Yin
    • 10
  • Salmo Raskin
    • 11
  • Ramiro Barrantes
    • 12
  • Robert E. Ferrell
    • 3
  • Ranajit Chakraborty
    • 4
  1. 1.Department of Environmental HealthUniversity of CincinnatiCincinnatiUSA
  2. 2.Department of AnthropologyPennsylvania State UniversityPennsylvaniaUSA
  3. 3.Department of Human GeneticsUniversity of PittsburghPittsburghUSA
  4. 4.Human Genetics CenterUniversity of Texas Health Science CenterHoustonUSA
  5. 5.Department of Medicine and International Health InstituteBrown UniversityProvidenceUSA
  6. 6.Sanjay Gandhi Post-Graduate Institute of Medical SciencesLucknowIndia
  7. 7.Department of EpidemiologyUniversity of PittsburghPittsburghUSA
  8. 8.Department of Geriatric MedicineEhime UniversityEhimeJapan
  9. 9.Klinik für Abdominal und TransplantationschirurgieMedizinische HochschuleHannoverGermany
  10. 10.Department of BiochemistryNational Defense Medical CenterTaipeiTaiwan
  11. 11.Universidade Federal do ParanaCuritibaBrazil
  12. 12.Instituto de Investigaciones en SaludUniversidad de Costa RicaSan JoseCosta Rica
  13. 13.Department of Environmental HealthUniversity of CincinnatiCincinnatiUSA

Personalised recommendations