Advertisement

Statistical Papers

, Volume 29, Issue 1, pp 281–300 | Cite as

Integer-valued moving average (INMA) process

  • M. Al-Osh
  • A. A. Alzaid
Articles

Abstract

A simple model for a stationary sequence of dependent integer-valued random variables {Xn} is given. The sequence to be called integer-valued moving average (INMA) process, is taken as the “survivals” of i.i.d. non-negative integervalued random variables. It is argued that the model’s structure reflects to some extent the mechanism generating real life data for many counting process and consequently it is useful for modelling such processes. Various properties for the special case in which {Xn} is Poisson INMA (1) process, such as the joint distribution, regression, time reversibility, along with the conditional and partial correlations, are discussed in details. Extension of the INMA of first order to higher order moving average is considered.

Key words

Integer-valued moving average process Poisson INMA (1) regression reversibility conditional and partial correlations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Al-Osh, M. A. and Alzaid, A. A. (1987). First-order integervalued autoregressive (INAR(1)) process J. Time Series Anal., 8, 261–275.zbMATHCrossRefMathSciNetGoogle Scholar
  2. Alzaid, A. A. and Al-Osh, M. A. (1988). First-order integervalued autoregressive (INAR(1)) process: distributional and regression properties. Statistica Neerlandica, to appear.Google Scholar
  3. Alzaid, A. A. and Al-Osh, M. A. (1987). Integer-valued autoregressive of order P(INAR(p)) process. Technical Report No. STR 1407-20, Department of Statistics, King Saud University.Google Scholar
  4. Cox, D. R. and Isham, V. (1980). Point Processes. Chapman and Hall, London.zbMATHGoogle Scholar
  5. Gaver, D. P. and Lewis, P. A. W. (1980). First-order autoregressive gamma sequences and point processes. Adv. Appl. Prob., 12, 727–745.zbMATHCrossRefMathSciNetGoogle Scholar
  6. Jacobs, P. A. and Lewis, P. A. W. (1977). A mixed autoregressive-moving average exponential sequence and point process (EARMA (1,1)). Adv. Appl. Prob., 9, 87–104.zbMATHCrossRefMathSciNetGoogle Scholar
  7. Jacobs, P. A. and Lewis, P. A. W. (1978a). Discrete time series generated by mixtures I: correlational and runs properties. J. R. Statist. Soc, B, 40, 94–105.zbMATHMathSciNetGoogle Scholar
  8. Jacobs, P. A. and Lewis, P. A. W. (1978b). Discrete time series generated by mixtures II: asymptotic properties. J. R. Statist. Soc. B, 40, 222–228.zbMATHMathSciNetGoogle Scholar
  9. Jacobs, P. A. and Lewis, P. A. W. (1983). Stationary discrete autoregressive-moving average time series generated by mixtures. J. Time Seris Analysis, 4, 18–36.MathSciNetGoogle Scholar
  10. Lawrance, A. J. (1976). On conditional and partial correlation. Amer. Statistician, 30, (3), 146–149.zbMATHCrossRefMathSciNetGoogle Scholar
  11. Lawrance, A. J. (1980). Some autoregressive models for point processes in “Point Processes and Queueing Problems” (P. Bartfai and J. Tomko, eds.), 257–275. Colloquia Mathematica Societatis Janos Bolyai 24, Amsterdam: North Holland.Google Scholar
  12. Lawrance, A. J. and Lewis, P. A. W. (1977). An exponential moving-average sequence and point process (EMAI). J. Appl. Prob. 14, 98–113.zbMATHCrossRefMathSciNetGoogle Scholar
  13. Lawrance, A. J. and Lewis, P. A. W. (1980). The exponential autoregressive moving average EARMA (p,q) process. J. R. Statist. Soc. B, 42, 150–161.zbMATHMathSciNetGoogle Scholar
  14. Lawrance, A. J. and Lewis, P. A. W. (1981). A new autoregressive time series model in exponential variables (NEAR(1)). Adv. Appl. Prob. 13, 826–845.zbMATHCrossRefMathSciNetGoogle Scholar
  15. Lawrance, A. J. and Lewis, P. A. W. (1986). Modelling and residual analysis of non-linear autoregressive time series in exponential variables (with discussion). J. R. Statist. Soc. B, 47, 165–202.MathSciNetGoogle Scholar
  16. Luckus, E. (1970). Characteristic Functions. Griffin, London.Google Scholar
  17. McKenzie, E. (1986a). Autoregressive moving-average processes with negative binomial and geometric marginal distributions. Adv. Appl. Prob. 18, 679–705.zbMATHCrossRefMathSciNetGoogle Scholar
  18. McKenzie, E. (1986b). Some simple models for discrete time series in “Time Series Analysis in Water Resources” (K. Hipel ed.) AWRA monograph # 4.Google Scholar
  19. Steutel, F. W. and van Harn, K. (1979). Discrete analogues of self-decomposability and stability. Ann. Probab. 7, 893–899.zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • M. Al-Osh
    • 1
  • A. A. Alzaid
    • 1
  1. 1.Department of Statistics College of ScienceKing Saud UniversityRiyadhSaudi Arabia

Personalised recommendations