Statistical Papers

, Volume 29, Issue 1, pp 191–203 | Cite as

An operative extension of the likelihood ratio test from fuzzy data

  • M. A. Gil
  • M. R. Casals


In the present paper we are going to extend the likelihood ratio test to the case in which the available experimental information involves fuzzy imprecision (more precisely, the observable events associated with the random experiment concerning the test may be characterized as fuzzy subsets of the sample space, as intended by Zadeh, 1965). In addition, we will approximate the immediate intractable extension, which is based on Zadeh’s probabilistic definition, by using the minimum inaccuracy principle of estimation from fuzzy data, that has been introduced in previous papers as an operative extension of the maximum likelihood method.


fuzzy information likelihood ratio test maximum likelihood estimation minimum inaccuracy estimation Zadeh’s probabilistic definition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Casals, M.R., Gil, M.A. and Gil, P. (1986a). On the use of Zadeh’s Probabilistic Definition for Testing Statistical Hypotheses from Fuzzy Information.Fuzzy Sets and Systems, 20, 175–190.zbMATHCrossRefMathSciNetGoogle Scholar
  2. Casals, M.R., Gil, M.A. and Gil, P. (1986b). The Fuzzy Decision Problem: an approach to the Problem of Testing Statistical Hypotheses with Fuzzy Information.European J. Oper. Res., 27, 371–382.zbMATHCrossRefMathSciNetGoogle Scholar
  3. Chernoff, H. and Lehmann, E.L. (1954). The use of the Maximum Likelihood Estimates in χ2 test for Goodness of Fit.Ann. Math. Stat., 25, 579–586.zbMATHCrossRefMathSciNetGoogle Scholar
  4. Corral, N. and Gil, M.A. (1984a). The Minimum Innaccuracy Fuzzy Estimation: an extension of the Maximum Likelihood Principle.Stochastica, VIII, 63–81.MathSciNetGoogle Scholar
  5. Cramer, H. (1946).Mathematical Methods of Statistics, Princeton University Press. Princeton.zbMATHGoogle Scholar
  6. Fisher, R.A. (1924). The condition under which χ2 measures the discrepancy between observation and hypothesis.J. Royal Statist. Soc. 87, 442–450.Google Scholar
  7. Gil, M.A. (1987a). Fuzziness and Loss of Information in Statistical Problems.IEEE Trans. Systems Man Cybernet., 17, 6, 1016–1025.zbMATHMathSciNetGoogle Scholar
  8. Gil, M.A. (1988a). Probabilistic-Possibilistic Approach to some Statistical Problems with Fuzzy Experimental Observations. InCombining Fuzzy Imprecision with Probabilistic Uncertainty in Decision-Making (J. Kacprzyk and M. Fedrizzi, Eds.). Springer-Verlag, Berlin, (accepted for publication).Google Scholar
  9. Gil, M.A. and Corral, N. (1987b). The Minimum Inaccuracy Principle in Estimating Population Parameters from Grouped Data.Kybernetes, 16, 43–49.zbMATHCrossRefMathSciNetGoogle Scholar
  10. Gil, M.A., Corral, N. and Gil, P. (1985a). The Fuzzy Decision Problem: an approach to the Point Estimation Problem with Fuzzy Information.European J. Oper. Res. 22, 26–34.zbMATHCrossRefMathSciNetGoogle Scholar
  11. Gil, M.A., Corral, N. and Gil, P. (1988b). The Minimum Inaccuracy Estimates in χ2 tests for Goodness of Fit with fuzzy observations.J. Statist. Plan. Inf., 18 (accepted for publication).Google Scholar
  12. Gil, M.A., López, M.T. and Gil, P. (1984b). Comparison between Fuzzy Information Systems.Kybernetes, 13, 245–251.zbMATHCrossRefMathSciNetGoogle Scholar
  13. Gil, M.A., López, M.T. and Gil, P. (1985b). Quantity of Information; Comparison between Information Systems: 1. Nonfuzzy States, 2. Fuzzy States.Fuzzy Sets and Systems, 15, 65–78, 129–145.zbMATHCrossRefMathSciNetGoogle Scholar
  14. Kerridge, D.F. (1961). Inaccuracy and Inference.J. Royal Stat. Soc., Ser. B, 23, 184–194.zbMATHMathSciNetGoogle Scholar
  15. Mathai, A.M. and Rathie, P.N. (1975).Basic Concepts in Information Theory and Statistics. Wiley Eastern Lim. New Delhi.zbMATHGoogle Scholar
  16. Okuda, T., Tanaka, H. and Asai, K. (1978). A Formulation of Fuzzy Decision Problems with Fuzzy Information, using Probability Measures of Fuzzy Events.Inform. Contr., 38, 135–147.zbMATHCrossRefMathSciNetGoogle Scholar
  17. Rathie, P.N. and Kannappan, PI. (1973). An Inaccuracy Function of type β.Ann. Inst. Statis. Math., 25, 205–214.zbMATHCrossRefMathSciNetGoogle Scholar
  18. Saaty, T.L. (1974). Measuring the Fuzziness of Sets.J. Cybernet., 4, 4, 53–61.CrossRefGoogle Scholar
  19. Tanaka, H., Okuda, T. and Asai, K. (1979). Fuzzy Information and Decision in Statistical Model. InAdvances in Fuzzy Sets Theory and Applications. North-Holland. Amsterdam, pp. 303–320.Google Scholar
  20. Wald, A. (1941a). Asymptotically most powerful tests of statistical hypotheses.Ann. Math. Stat., 12, 1–19.zbMATHCrossRefMathSciNetGoogle Scholar
  21. Wald, A. (1941b). Some examples of asymptotically most powerful tests.Ann. Math. Stat., 12, 396–408.zbMATHCrossRefMathSciNetGoogle Scholar
  22. Wilks, S.S. (1938). The large-sample distribution of the likelihood ratio test for testing composite hypotheses.Ann. Math. Stat., 9, 60–62.zbMATHCrossRefGoogle Scholar
  23. Zadeh, L.A. (1965). Fuzzy Sets.Inform. Contr., 8, 338–353.zbMATHCrossRefMathSciNetGoogle Scholar
  24. Zadeh, L.A. (1968). Probability Measures of Fuzzy Events.J. Math. Anal. Appl., 23, 421–427.zbMATHCrossRefMathSciNetGoogle Scholar
  25. Zadeh, L.A. (1978). Fuzzy Sets as a basis for a Theory of Possibility.Fuzzy Sets and Systems, 1, 3–28.zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • M. A. Gil
    • 1
  • M. R. Casals
    • 1
  1. 1.Departmento de MatemáticasUniversidad de OviedoOviedoSpain

Personalised recommendations