Statistische Hefte

, Volume 16, Issue 1, pp 39–56 | Cite as

Sample sizes for distribution-free tolerance intervals

  • Josef Laga
  • Jiri Likeš


Mathematical Statistics Tolerance Limit Beta Function Minimum Sample Size Statistical Tolerance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Guttman, I. [1970], Statistical Tolerance Regions: Classical and Bayesian. London, Charles Griffin & Company Limited (1970).zbMATHGoogle Scholar
  2. Jílek, M. and Líkař, O. [1960], Table of Random Sample Sizes, Needed for Obtaining Non-parametric Tolerance Regions. Zastosowania Matematyki 5(1960), p. 155–160.MathSciNetzbMATHGoogle Scholar
  3. Murphy, R.B. [1948], Non-parametric Tolerance Limit. The Annals of Mathematical Statistics 19(1948), p. 581–589.CrossRefMathSciNetzbMATHGoogle Scholar
  4. Owen, D.B. [1962], Handbook of Statistical Tables. Reading, Massachusetts and London, Addison-Wesley Publishing Company (1962).zbMATHGoogle Scholar
  5. Scheffé, H. and Tukey, J.W. [1944], A Formula for Sample Sizes for Population Tolerance Limits. The Annals of Mathematical Statistics 15(1944), p. 217.CrossRefGoogle Scholar
  6. Somerville, P.N. [1958], Tables for Obtaining Non-parametric Tolerance Limits. The Annals of Mathematical Statistics 29(1958), p. 599–601.CrossRefzbMATHGoogle Scholar
  7. Thompson, C.M. [1941–42], Table of Percentage Points of the x2-distribution Biometrika 32(1941–42), p. 187–191.MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1964

Authors and Affiliations

  • Josef Laga
    • 1
  • Jiri Likeš
    • 1
  1. 1.Vysoká Skola EkonomickáPraha 3CSSR

Personalised recommendations