Advertisement

Growth of Microalgae in High CO2 Gas and Effects of SOX and NOX

  • Masaaki Negoro
  • Norio Shioji
  • Kazohisa Miyamoto
  • Yoshiharu Micira
Session 4 Bioengineering Research

Abstract

Growth and lipid production of microalgae were investigated, with attention to the feasibility of making use of flue gas CO2 as a carbon source. The effect of a high CO2 level in artificial seawater differed from strain to strain. Three algal strains from the Solar Energy Research Institute (Golden, CO) collection were selected as good fixers of CO2 when the level of CO2 in the sparging gas was high. These algae also accumulated large amounts of crude lipids. SOX and NOX inhibited algal growth, but a green alga,Nannochloris sp. NANNO2 grew after a lag period, even when it received NO gas at the concentration of 300 ppm.

Index Entries

CO2 elimination flue gas lipid production marine algae SOX and NOX 

References

  1. 1.
    Uchiyama, Y. (1989),Energy and Resources 10, 380.Google Scholar
  2. 2.
    Benemann, J. R., Goebel, R. P., Weissman, J. C., and Augenstein, D. C. (1982),Microalgae as a Source of Liquid Fuels, Final Technical Report prepared by Enbio, Inc., for the U.S. Department of Energy, Office of Energy Research, Washington, DC.Google Scholar
  3. 3.
    Borowitzka, M. A. (1988),Micro-algal Biotechnology, Borowitzka, M. A. and Borowitzka, L. J., eds., Cambridge University Press, Cambridge, pp. 153–196.Google Scholar
  4. 4.
    Bert-Amotz, A. and Avron, M. (1983),Ann. Rev. Microbiol. 37, 95.CrossRefGoogle Scholar
  5. 5.
    Richmond, A. (1988),Micro-algal Biotechnology, Borowitzka, M. A. and Borowitzka, L. J., eds., Cambridge University Press, Cambridge, pp. 85–121.Google Scholar
  6. 6.
    Neenan, B., Feinberg, D., Hill, A., McIntosh, R. and Terry, Ken. (1986),Fuels from Microalgae: Technology Status, Potential, and Research Requirements, Solar Energy Research Institute, Golden, Colorado.Google Scholar
  7. 7.
    Borowitzka, M. A. (1988),Micro-algal Biotechnology, Borowitzka, M. A. and Borowitzka, L. J., eds., Cambridge University Press, Cambridge, pp. 257–287.Google Scholar
  8. 8.
    Benemann, J. R., Weissman, J. C., Koopman, B.L., and Oswald, W. J. (1977),Nature 268, 19.CrossRefGoogle Scholar
  9. 9.
    Benemann, J. R., Miyamoto, K., and Hallenbeck, P. C. (1980),Enzyme Microbiol. Technol. 2, 103.CrossRefGoogle Scholar
  10. 10.
    Barclay, W., Johansen, J., Chelf, P., Nagel, N., Roessler, P., and Lemke, P. (1986),Microalgae Culture Collection 1986-1987. Solar Energy Research Institute, Golden, Colorado.Google Scholar
  11. 11.
    Pirt, M. W. and Pirt, J. (1980),J. Gen. Microbiol. 119, 321.Google Scholar
  12. 12.
    Sriharan, S., Bagga, D., and Sriharan, T. P. (1989),Appl. Biochem. Biotechnol. 20/21, 281.CrossRefGoogle Scholar
  13. 13.
    Schwartz, S. E. (1989),Science 243, 753.CrossRefGoogle Scholar
  14. 14.
    Atsukawa, M., Matsumoto, K., Shinoda, N., Kimishima, M., and Ouchi, Y. (1974),Mitsubishi Heavy Industries TECHNICAL REVIEW,11, 39.Google Scholar

Copyright information

© Humana Press Inc. 1991

Authors and Affiliations

  • Masaaki Negoro
    • 1
  • Norio Shioji
    • 1
  • Kazohisa Miyamoto
    • 2
  • Yoshiharu Micira
    • 2
  1. 1.Takasago Research and Development CenterMitsubishi Heavy Industries, Ltd.Takasago, Hyogo 676Japan
  2. 2.Faculty of Pharmaceutical SciencesOsaka UniversitySuita, Osaka 565Japan

Personalised recommendations