Advertisement

Applied Biochemistry and Biotechnology

, Volume 28, Issue 1, pp 865–875 | Cite as

Degradation of Organic Cyanides byPseudomonas aeruginosa

  • Mohamed S. Nawaz
  • John W. Davis
  • James H. Wolfram
  • Kirit D. Chapatwala
Session 4 Bioengineering Research

Abstract

A bacterium capable of utilizing acetonitrile (methyl cyanide) as the sole source of carbon and nitrogen was isolated from soil and identified asPseudomonas aeruginosa. This bacterium could also utilize and oxidize numerous lower-mol-wt nitrile compounds and their corresponding amides as growth substrates. A metabolite of acetonitrile in the culture medium was determined to be ammonia. The accumulation of ammonia in the culture medium was proportional to the concentration of the substrate and the inoculum. Cell extracts of the bacterium contained activities corresponding to nitrile aminohydrolase (E C 3.5.5.1) and amidase (E C 3.5.1.4), which regulate the degradation of acetonitrile. Both enzymes were inducible and hydrolyzed a wide range of substrates, and it was determined that the specific activity of amidase was far greater than the activity of nitrile aminohydrolase.

Index Entries

Acetonitrile biodegradation nitrile aminohydrolase amidase 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Smith, P. A. S. (1965),Open Chain Nitrogen Compounds, vol. 1, W. A. Benjamin, New York.Google Scholar
  2. 2.
    Knowles, C. J. (1976),Bacteriol. Rev. 40, 652.Google Scholar
  3. 3.
    Tissot, B. P. and Weite, D. H. (1984),Petroleum Formation and Occurrence, Springer-Verlag, New York.Google Scholar
  4. 4.
    Henahan, J. F. and Idol, J. F. (1971),Chem. Eng. News 49, 16.Google Scholar
  5. 5.
    Ludzack, F. J., Schaffer, R. B., and Bloomhoff, R. N. (1961),J. Water Poll. Cont. Fed. 33, 492.Google Scholar
  6. 6.
    Nawaz, M. S., Chapatwala, K. D., and Wolfram, J. H. (1989),Appl. Environ. Microbiol. 55, 2267.Google Scholar
  7. 7.
    Yamada, H., Asano, Y., and Tani, Y. (1979),J. Ferment. Technol. 5, 8.Google Scholar
  8. 8.
    DiGeronimo, M. J., and Antoine, A. D. (1976),Appl. Environ. Microbiol. 31, 900.Google Scholar
  9. 9.
    Bui, K., Fradet, H., Arnaud, A., and Galzy, P. (1984),J. Gen. Microbiol. 130, 89.Google Scholar
  10. 10.
    Yamada, H., Asano, Y., and Tani, Y. (1980),J. Ferment. Technol. 6, 495.Google Scholar
  11. 11.
    Watanabe, I., Satoh, Y., and Enomoto, K. (1982),Agric. Biol. Chem. 12, 3193.Google Scholar
  12. 12.
    Asano, V., FuJishiro, K., Tani, Y., and Yamada, H. (1982),Agric. Biol. Chem. 46, 1165.Google Scholar
  13. 13.
    Asano, Y., Tachibana, M., Tani, Y., and Yamada, H. (1982),Agric. Biol. Chem. 46, 1175.Google Scholar
  14. 14.
    Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951),J. Biol. Chem. 193, 265.Google Scholar
  15. 15.
    Kaplan, A. (1969),Methods Biochem. Anal. 17, 311.CrossRefGoogle Scholar
  16. 16.
    Bandyopadhyay, A. K., Nagasawa, T., Asano, Y., Fujishiro, K., Tani, Y., and Yamada, H. (1986),Appl. Environ. Microbiol. 51, 302.Google Scholar

Copyright information

© Humana Press Inc. 1991

Authors and Affiliations

  • Mohamed S. Nawaz
    • 1
  • John W. Davis
    • 1
  • James H. Wolfram
    • 2
  • Kirit D. Chapatwala
    • 1
  1. 1.Division of Natural SciencesSelma UniversitySelma
  2. 2.BiotechnologyINEL, EGGG, Idaho, Inc.Idaho Falls

Personalised recommendations