Thermophilic ethanol production investigation of ethanol yield and tolerance in continuous culture

  • Lee R. Lynd
  • Hyung-Jun Ahn
  • Greg Anderson
  • Paul Hill
  • D. Sean Kersey
  • Taryn Klapatch
Session 4 Bioengineering Research


Ethanol yield and ethanol tolerance, the two factors that most constrain the utilization of thermophilic bacteria for ethanol production, were investigated in continuous xylose-grown cultures ofClostridium thermosaccharolyticum. Under xylose-limiting conditions, including varying dilution rates and feed concentrations, the ethanol selectivity (Se, mol/mol) relative to acetic acid, lactic acid, and propane diol remained relatively constant at about 2. Product addition and removal experiments indicate that mass action effects related to the concentrations of organic fermentation products play a relatively minor role in determining the ratios of products made. Of much greater apparent importance were as yet uncharacterized regulatory mechanisms that appear to be correlated with nonlimiting concentrations of the carbon and energy-source. Substrate-plentiful transients were found to accompany Se values > 11. Such transients provide a useful model system for the study of end product control, as well as a cultivation mode with considerable applied potential. No apparent ethanol inhibition was observed, as indicated by no decrease in the maximum rate of growth allowing complete substrate utilization (0.22 h-1) for endogenously-produced ethanol concentrations up to 11.4 g/L, and total endogenously-produced + exogenously-added ethanol concentrations up to 21.3 g/L. Higher concentrations of ethanol are tolerated atµ = 0.11 h-1, although the onset of inhibition was not characterized at this growth rate. Results suggest that the ethanol tolerance of C.thermosaccharolyticum grown in continuous culture may be greater than that typically observed previously for thermophiles grown in batch culture.

Index Entries

Ethanol yield tolerance continuous culture thermophiles 


  1. 1.
    Lovitt, R. W. Kim, B. H., Shen, G-J., and Zeikus, J. G. (1988),CRC Crit. Rev. Biotechnol. 7(2), 107.CrossRefGoogle Scholar
  2. 2.
    Lynd, L. R. (1989), Production of ethanol from lignocellulose using thermophilic bacteria: Critical evaluation of potential and review, Fiechter, A. ed., Advances in Biochemical Engineering/Biotechnology38, 1.Google Scholar
  3. 3.
    Slapack, G. E., Russell, I., and Stewart, G. G. (1987),Thermophilic bacteria and thermotolerant yeasts for ethanol production, CRC, Boca Raton.Google Scholar
  4. 4.
    Wiegel, J. and Ljundahl, L. G. (1986),CRC Crit. Rev. Biotechnol. 3(1), 39.CrossRefGoogle Scholar
  5. 5.
    Hinman, N. D., Wright, J. D., Hoagland, W., and Wyman, C. E. (1989),Appl. Biochem. Biotechnol. 20/21, 391.Google Scholar
  6. 6.
    Herrero-Molina, A. A. (1981), The physiology ofClostridium thermocellum in relation to its energy metabolism. Ph.D. Thesis, MIT.Google Scholar
  7. 7.
    Ljungdahl, L. G., Bryant, F., Camera, L., Saiki, T., and Wiegel, J. (1981),Trends in the Biology of Fermentation for Chemicals and Fuels, Hollaender, A., ed., p. 397, Plenum, New York.Google Scholar
  8. 8.
    Sundquist, J. A., Blanch, H. W., and Wilke, C. R. (1986), Ethanol production withClostridium thermohydrosulfuricum. Presented at the 192nd meeting of the ACS.Google Scholar
  9. 9.
    Mistry, F. (1986), Ethanol production byClostridium thermosaccharolyticum in a continuous culture cell recycle system, Ph. D. Thesis, MIT.Google Scholar
  10. 10.
    Ram, S. and Seenayya, G. (1989),Biotech. Lett. 11, 589.CrossRefGoogle Scholar
  11. 11.
    Doremus, M. G., Linden, J. C, and Moreira, A. R. (1985),Biotechnol. Bioeng. 27, 852.CrossRefGoogle Scholar
  12. 12.
    De Corte, B., Dries, D., Verstraete, W., Stevens, P., Goossens, L., De Vos, P., and De Ley, J. (1989),Biotech. Lett. 11, 583.CrossRefGoogle Scholar
  13. 13.
    Ben-Bassat, A., Lamed, R., and Zeikus, J. G. (1981),J.Bacterial. 146, 192.Google Scholar
  14. 14.
    Chung, H. T. (1976),Appl. Environ. Microbiol. 31, 342.Google Scholar
  15. 15.
    Ianotti, E. L., Kafkewita, D., Wolin, M. J., and Bryant, M. P. (1973),J.Bacteriol. 114, 1231–1240.Google Scholar
  16. 16.
    Weimer, P. J., Zeikus, J. G. (1977),Appl. Environ. Microbiol. 33, 289–297.Google Scholar
  17. 17.
    Sonnleitner, B., Fiechter, A., and Giovannini, F. (1984),Appl. Microbiol. Biotechnol. 19, 326–334.CrossRefGoogle Scholar
  18. 18.
    Vancanneyt, M., De Vos, J., and De Ley, J. (1987),Biotechnol. Lett. 9(8), 567–572.CrossRefGoogle Scholar
  19. 19.
    Landuty, S. L. and Hsu, E. J. (1985),Fundamental and Applied Aspects of Bacterial Spores, Dring, G. J., Ellar, D. J., and Gould, G. W., eds., (FEMS Symposium No. 18) Academic, New York.Google Scholar
  20. 20.
    Kim, B. H., Bellows, P., Datta, R., and Zeikus, J. G. (1984),Appl. Environ. Microbiol. 48, 764.Google Scholar
  21. 21.
    Myer, C. L. and Papoutsakis, E. T. (1989),Appl. Microbiol. Biotechnol. 30, 450.Google Scholar
  22. 22.
    Lovitt, R. W., Shen, G-J., and Zeikus, J. G. (1988),J.Bacteriol 170, 2809.Google Scholar
  23. 23.
    Rao, G. and Mutharasan, R. (1986),Biotech. Lett. 8, 893.CrossRefGoogle Scholar
  24. 24.
    Rao, G. and Mutharasan, R. (1988),Biotech. Lett 10, 313.CrossRefGoogle Scholar
  25. 25.
    Lovitt, R. W., Longin, R., and Zeikus, J. G. (1984),Appl. Environ. Microbiol. 48, 171.Google Scholar
  26. 26.
    Campbell, M. F. and Ordal, Z. J. (1968),Appl. Microbiol. 16, 1949.Google Scholar
  27. 27.
    Hsu, E. J. and Ordal, Z. J. (1970),J.Bacteriol. 102, 369.Google Scholar
  28. 28.
    Afschar, A. S., Biebl, H., Schaller, K., and Schugerl, K. (1985),Appl. Microbiol. Biotechnol. 22, 394.CrossRefGoogle Scholar
  29. 29.
    Zeikus, J. G., Ben-Bassat, A., Ng, T. K., and Lamed, R. (1981),Trends in the Biology of Fermentations for Chemicals and Fuels, Hollaender, A., ed., p. 441, Plenum, New York.Google Scholar
  30. 30.
    Avgerinos, G. C. and Wang, D. I. C. (1983),Biotechnol. Bioeng. 25, 67.CrossRefGoogle Scholar
  31. 31.
    Lacis, L. S. and Lawford, H. G. (1989),Appl. Biochem. Biotechnol. 20/21, 479.CrossRefGoogle Scholar
  32. 32.
    Hon-Nami, K., Coughlan, M. P., Hon-Nami, H., Camera, L. H., and Ljungdahl, L. G. (1985),Biotechnol. Bioeng. Symp. 15, 191.Google Scholar
  33. 33.
    Lynd, L. R., Wolkin, R. H., and Grethlein, H. E. (1989),Appl. Env. Microbiol. 55(12), 3131.Google Scholar
  34. 34.
    Mistry, F. and Cameron, D. (formerly of MIT), personal communication.Google Scholar
  35. 35.
    Lacis, L. (1989), The fermentation of xylose and glucose by a thermophilic bacterium:Thermobacter ethanolicus Ph.D. thesis, University of Toronto, Toronto.Google Scholar
  36. 36.
    Mistry, F. and Cooney, C. L. (1989),Biotechnol. Bioeng. 34, 1295.CrossRefGoogle Scholar
  37. 37.
    Lacis, L. S. and Lawford, H. G. (1988),Arch. Microbiol. 150, 48.CrossRefGoogle Scholar
  38. 38.
    Germaine, P., Toukourou, F., and Donaduzzi, L. (1987),Appl. Microbiol. Biotechnol. 24, 300–305.Google Scholar
  39. 39.
    Lamed, R. L. and Zeikus, J. G. (1980),J.Bacteriol. 144, 569.Google Scholar
  40. 40.
    Garvie, E. I. (1980),Microbiol. Rev. 44, 106.Google Scholar
  41. 41.
    Camera, L. H. and Ljungdahl, L. G. (1984), Wise, D. L., ed.,Liquid Fuel Developments, (CRC Series in Biotechnology), CRC, Boca Raton.Google Scholar
  42. 42.
    Yoch, D. C. and Carithers, R. P. (1979),Microbiol. Rev. 43, 384.Google Scholar
  43. 43.
    Thauer, R. K., Jungermann, K., and Decker, K. (1977),Bact. Rev. 41(1), 100.Google Scholar
  44. 44.
    Tait, R. C, Anderson, K., Cangelosi, G., and Shanmugam, K. T. (1981),Trends in the Biology of Fermentations for Chemicals and Fuels. Hollaender, A., ed., p. 279, Plenum, New York.Google Scholar
  45. 45.
    Jungermann, K., Thauer, R. K., Leimenstoll, G., and Decker, K. (1973),Biochim. Biophys. Acta 305, 268.CrossRefGoogle Scholar
  46. 46.
    Petitdemange, H., Cherrier, C, Raval, G., and Gay, R. (1976),Biochim. Biophys. Acta 421, 334.Google Scholar
  47. 47.
    Huesemann, M. H. W. and Papoutsakis, E. T. (1989),Appl. Microbiol. Biotechnol. 30, 585–595.Google Scholar
  48. 48.
    Huesemann, M. H. W. and Papoutsakis, E. T. (1989),Appl. Microbiol. Biotechnol. 31, 435–444.CrossRefGoogle Scholar
  49. 49.
    Myer, C. L. and Papoutsakis, E. T. (1989),Bioproc. Engrg. 4, 1.CrossRefGoogle Scholar
  50. 50.
    Myer, C. L. and Papoutsakis, E. T. (1989),Bioproc. Engrg. 4, 49.CrossRefGoogle Scholar
  51. 51.
    Myer, C. L. and Papoutsakis, E. T. (1989),Appl. Microbiol. Biotechnol. 30, 450.Google Scholar
  52. 52.
    Roos, J. W., McLaughlin, J. K., and Papoutsakis, E. T. (1985),Biotechnol. Bioeng. 27, 681.CrossRefGoogle Scholar
  53. 53.
    Ingram, L. O. (1990),CRC Crit. Rev. Biotechnol. 9(4), 305.CrossRefGoogle Scholar
  54. 54.
    D’Amore, T., Panchal, C. J., Russell, I., and Stewart, G. G. (1990),CRC Crt. Rev. Biotechnol. 9(4), 287.CrossRefGoogle Scholar
  55. 55.
    Herrero, A. A. and Gomez, R. F. (1980),Appl. Environ. Microbiol. 40(3), 571.Google Scholar
  56. 56.
    Herrero, A. A., Gomez, R. F., Cnedcor, B., Tolman, C. J., and Roberts, M. F. (1985),Appl. Microbiol. Biotechnol. 22, 53–63.CrossRefGoogle Scholar
  57. 57.
    Herrero, A. A., Gomez, R. F., and Roberts, M. F. (1982),Biochim. Biophys. Acta 693, 195.CrossRefGoogle Scholar
  58. 58.
    Herrero, A. A., Gomez, R. F., and Roberts, M. F. (1985),J. Biol. Chem. 260(12), 7442.Google Scholar
  59. 59.
    Kundu, S., Ghose, T. K., and Mukhopadhyay, S. N. (1983),Biotechnol. Bioeng. 25, 1109.CrossRefGoogle Scholar
  60. 60.
    Wang, D. I. C, Avgerinos, G. C, Biocic, I., Fang, S. D., and Fang, H. Y. (1983),Philos. Trans. R. Soc. London B300, 323.Google Scholar
  61. 61.
    Kim, S. (1982), Microbiol production of ethanol byCLostridium thermosaccharolyticum. M.S. Thesis, MIT, Cambridge.Google Scholar
  62. 62.
    Lovitt, R. W., Longin, R., and Zeikus, J. G. (1984),Appl. Environ. Microbiol. 48, 171.Google Scholar
  63. 63.
    Lee, K. J. and Rogers, P. L. (1983),Chem. Eng. J. 27, B31-B38.CrossRefGoogle Scholar
  64. 64.
    Jobses, I. M. L. and Roels, J. A. (1986),Biotechnol. Bioeng. 28, 554.CrossRefGoogle Scholar
  65. 65.
    Agarawal, P. and Veeramallu, U. J. (1990),Chem. Tech. Biotechnol. 47, 1.Google Scholar
  66. 66.
    Fried, V. A. and Novick, A. (1973),J. Bacteriol. 114, 239.Google Scholar
  67. 67.
    Murray, W. D., Wemyss, K. B., Khan, A. W. (1983),Eur. J. Microbiol. Biotechnol. 18, 71.CrossRefGoogle Scholar
  68. 68.
    Abbott, B. J. (1973),J. Gen. Microbiol. 75, 383.Google Scholar
  69. 69.
    Bazua, C. D. and Wilke, C. R. (1967),Biotechnol. Bioeng. Symp. 7, 107.Google Scholar
  70. 70.
    Holzberg, I., Finn, R. K., and Steinkraus, K. H. (1967),Biotechnol. Bioeng. 9, 413.CrossRefGoogle Scholar
  71. 71.
    Ghose, T. K. and Tyagi, R. D. (1979),Biotechnol. Bioeng. 21, 1401.CrossRefGoogle Scholar
  72. 72.
    Aiba, S., Shoda, M., and Nagatani, M. (1968),Biotechnol. Bioeng. 10, 845.CrossRefGoogle Scholar
  73. 73.
    Barbosa, M. de F. S., Lee, H., and Collins-Thompson, D. L. (1990),Appl. Environ. Microbiol. 56(2), 545.Google Scholar
  74. 74.
    Beaven, M. J., Charpentier, C, and Rose, A. H. (1982),J. Gen. Microbiol 128, 1447.Google Scholar
  75. 75.
    Loureiro, V. and Ferreira, H. G. (1983),Biotechnol. Bioeng. 25, 2263.CrossRefGoogle Scholar
  76. 76.
    Nagodawithana, T. W. and Steinkraus, K. H. (1976),Appl. Environ. Microbiol. 31, 158.Google Scholar
  77. 77.
    Novak, M., Strehaiano, P., Moreno, M., and Goma, G. (1981),Biotechnol. Bioeng. 23, 201.CrossRefGoogle Scholar
  78. 78.
    Thomas, D. S. and Rose, A. H. (1979),Arch. Microbiol. 122, 49.CrossRefGoogle Scholar
  79. 79.
    Dasari, G., Roddick, F., Connor, M. A., and Pamment, N. B. (1983),Biotechnol. Lett. 5, 715.CrossRefGoogle Scholar
  80. 80.
    Dombek, K. M. and Ingram, L. O. (1986),Appl. Environ. Microbiol. 51, 197.Google Scholar
  81. 81.
    Guijarro, J. M. G. and Lapunas, R. (1984),J.Bacteriol. 160, 874.Google Scholar
  82. 82.
    Pirt, S. J. (1975), Principles of microbe and cell cultivation, Wiley, NY.Google Scholar

Copyright information

© Humana Press Inc. 1991

Authors and Affiliations

  • Lee R. Lynd
    • 1
  • Hyung-Jun Ahn
    • 1
  • Greg Anderson
    • 1
  • Paul Hill
    • 1
  • D. Sean Kersey
    • 1
  • Taryn Klapatch
    • 2
  1. 1.Thayer School of EngineeringDartmouth CollegeHanover
  2. 2.Department of BiologyDartmouth CollegeHanover

Personalised recommendations