Performance of trickle-bed bioreactors for converting synthesis gas to methane

  • D. E. Kimmel
  • K. T. Klasson
  • E. C. Clausen
  • J. L. Gaddy
Session 3 Applied Biological Research II

Abstract

Carbon monoxide, H2, and CO2 in synthesis gas can be converted to CH4 by employing a triculture ofRhodospirillum rubrum, Methanosarcina barken, andMethanobacterium formicicum. Trickle-bed reactors have been found to be effective for this conversion because of their high mass-transfer coefficients. This paper compares results obtained for the conversion of synthesis gas to CH4 in 5-cm- and 16.5-cm-diameter trickle-bed reactors. Mass-transfer and scale-up parameters are defined, and light requirements forR. rubrum are considered in bioreactor design.

Index Entries

Synthesis gas methane trickle-bed reactor triculture 

Nomenclature

G

gas flow rate mL/h

∈l

liquid porosity mL/mL

h

column height cm

H

Henry’s law constant L-atm CO/mol CO

KLa

mass-transfer coefficient h-1

P

partial pressure or tension atm

q

specific uptake rate mmol/gcell.h

R

ideal gas law constant L.atm/mol.K

S

cross-sectional area cm2

T

temperature K

X

cell concentration g/L

Yco

mole fraction ratio between CO and inert mol/mol

Superscripts

i

inlet conditions

o

outlet conditions

*

equilibrium

Subscripts

G

gas phase

L

liquid phase

References

  1. 1.
    Sublette, K. L. and Sylvester, N. D. (1986),Biotechnol. Bioeng. Symp. Series 17, 543–564.Google Scholar
  2. 2.
    Cork, D. J., Garunas, R., and Sajjad, A. (1983),Appl. Environ. Microbiol. 45, 913–918.Google Scholar
  3. 3.
    Grace, B. T., Gillespie, J., and Puckett, K. J. (1985),Can. J. Bot. 63, 797–805.Google Scholar
  4. 4.
    Wilkinson, T. G., Topiwala, H. H., and Hamer, G. (1974),Biotechnol. Bioeng. 16, 41–59.CrossRefGoogle Scholar
  5. 5.
    Levy, P. F., Barnard, G. W., Garcia-Martinez, D. V., Sanderson, J. E., and Wise, D. L. (1981),Biotechnol. Bioeng. 23, 2293–2306.CrossRefGoogle Scholar
  6. 6.
    Vega, J. L., Antorrena, G. M., Clausen, E. C., and Gaddy, J. L. (1989),Biotechnol. Bioeng. 34, 785–793.CrossRefGoogle Scholar
  7. 7.
    Klasson, K. T., Cowger, J. P., Ko, C. W., Vega, J. L., Clausen, E. C., and Gaddy, J. L. (1990),Appl. Biochem. Biotechnol. 24/25, 317–328.CrossRefGoogle Scholar
  8. 8.
    Vega, J. L., Prieto, S., Elmore, B. B., Clausen, E. C., and Gaddy, J. L. (1989),Appl. Biochem. Biotechnol. 20/21, 781–797.Google Scholar
  9. 9.
    Charpentier, J. C. (1981),Advances in Chemical Engineering, vol. II, (Academic, New York).Google Scholar
  10. 10.
    Vega, J. L., Holmberg, V. L., Ko, C. W., Clausen, E. C., and Gaddy, J. L. (1988),Advanced Studies of the Biological Conversion of Coal Synthesis Gas to Methane, Topical Report 1, Reactor optimization. US Department of Energy, Morgantown Energy Technology Center, Contract No. DE-AC21-86MC23281.Google Scholar
  11. 11.
    Lorowitz, W. H., and Bryant, M. P. (1984),Appl. Environ. Microbiol. 47, 961–964.Google Scholar
  12. 12.
    Kerby, R., Niemczura, W., and Zeikus, J. G. (1983),J. Bacterial. 155, 1208- 1218.Google Scholar
  13. 13.
    Genthner, B. R. S., and Bryant, M. P. (1982),Appl. Environ. Microbiol. 43, 70–74.Google Scholar
  14. 14.
    Jones, W. J., Nagle, D. P., Jr., and Whitman, W. B. (1987),Microbiol. Rev. 51, 135–177.Google Scholar
  15. 15.
    Klasson, K. T., Vega, J. L., Ko, C. W., Kimmel, D. E., Cowger, J. P., Barik, S., Johnson, E. R., Holmberg, V. L., Clausen, E. C., and Gaddy, J. L. (1990),Advanced Studies of the Biological Conversion of Coal Synthesis Gas to Methane, Final Report, US Department of Energy, Morgantown Energy Technology Center, Contract No. DE-AC21-86MC23281.Google Scholar
  16. 16.
    Kluyver, A. J. and Schnellen, C. G. (1947),Arch. Biochem. 14, 57–70.Google Scholar
  17. 17.
    Ko, C. W., Vega, J. L., Clausen, E. C., and Gaddy, J. L. (1987),Advanced Studies at the Biologkal Conversion of Coal Synthesis Gas to Methane, Topical Report 3. The Effects of acetate and pressure on methanogenesis. US Department of Energy, Morgantown Energy Technology Center, Contract No. DE-AC21-86MC23281.Google Scholar
  18. 18.
    Vega, J. L., Klasson, K. T., Kimmel, D. E., Clausen, E. C., and Gaddy, J. L. (1990),Appl. Biochem. Biotechnol. 24/25, 329–340.Google Scholar
  19. 19.
    Klasson, K. T., Elmore, B. B., Vega, J. L., Ackerson, M. D., Clausen, E. C., and Gaddy, J. L. (1990),Appl. Biochem. Biotechnol. 24/25, 857–876.Google Scholar
  20. 20.
    Mclnerney, M. J., Bryant, M. P., and Pfennig, N. (1979),Arch. Microbiol. 122, 129–135.CrossRefGoogle Scholar
  21. 21.
    Genthner, B. R. S., Davis, M. P., and Bryant, M. P. (1981),Appl. Environ. Microbiol. 42, 12–19.Google Scholar

Copyright information

© Humana Press Inc. 1991

Authors and Affiliations

  • D. E. Kimmel
    • 1
  • K. T. Klasson
    • 1
  • E. C. Clausen
    • 1
  • J. L. Gaddy
    • 1
  1. 1.Department of Chemical EngineeringUniversity of ArkansasFayetteville

Personalised recommendations