Advertisement

Applied Biochemistry and Biotechnology

, Volume 28, Issue 1, pp 131–144 | Cite as

Ethanolic fermentation of pentoses in lignocellulose hydrolysates

  • Bärbel Hahn-HäGerdal
  • Torbjörn Lindén
  • Thomas Senac
  • Kerstin Skoog
Session 2 Applied Biological Research I

Abstract

In the fermentation of lignocellulose hydrolysates to ethanol, two major problems are encountered: the fermentation of the pentose sugar xylose, and the presence of microbial inhibitors. Xylose can be directly fermented with yeasts, such as Pachysolen tannophilus, Candida shehatae, and Pichia stipis, or by isomerization of xylose to xylulose with the enzyme glucose (xylose) isomerase (XI; EC 5.3.1.5), and subsequent fermentation with bakers’ yeast, Saccharomyces cerevisiae. The direct fermentation requires low, carefully controlled oxygenation, as well as the removal of inhibitors. Also, the xylose-fermenting yeasts have a limited ethanol tolerance. The combined isomerization and fermentation with XI and S. cerevisiae gives yields and productivities comparable to those obtained in hexose fermentations without oxygenation and removal of inhibitors. However, the enzyme is not very stable in a lignocellulose hydrolysate, and S. cerevisiae has a poorly developed pentose phosphate shunt. Different strategies involving strain adaptation, and protein and genetic engineering adopted to overcome these different obstacles, are discussed.

Index Entries

Lignocellulose hydrolysate fermentation ethanol yeast xylose isomerase 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ladisch, M. R., Lin, K. W., Voloch, M., and Tsao, G. T. (1983),Enzyme Microb. Technol. 5, 82–102.CrossRefGoogle Scholar
  2. 2.
    Zacchi, G., Skoog, K., and Hahn-Hägerdal, B. (1988),Biotechnol. Bioeng. 32, 460–466.CrossRefGoogle Scholar
  3. 3.
    Skoog, K. and Hahn-Hägerdal, B. (1988),Enzyme Microb. Technol. 10(2), 66–78.CrossRefGoogle Scholar
  4. 4.
    Slininger, P. J., Bolen, P. L., and Kurtzman, C. P. (1987),Enzyme Microb. Technol. 9(1), 5–15.CrossRefGoogle Scholar
  5. 5.
    Prior, B. A., Kilian, S. G., and du Prez, J. C. (1989),Process Biochem. 2, 21–32.Google Scholar
  6. 6.
    Wang, P. Y., Johnson, B. F., and Schneider, H. (1980),Biotechnol. Lett. 2, 273–278.CrossRefGoogle Scholar
  7. 7.
    Wang, P. Y., Shopsis, C., and Schneider, H. (1980),Biochem. Biophys. Res. Comm. 94, 248–254.CrossRefGoogle Scholar
  8. 8.
    Chiang, L.-C, Gong, C.-S., Chen, L.-F., and Tsao, G. T. (1981),Appl. Environ. Microbiol. 42, 284–289.Google Scholar
  9. 9.
    Chiang, L.-C., Hsiao, H.-Y., Ueng, L.-F., and Tsao, G. T. (1981),Biotechnol. Bioeng. Symp. 2, 263–274.Google Scholar
  10. 10.
    Gong, C.-S., Chen, L.-F., Flickinger, M. C, Chiang, L.-C, and Tsao, G. T. (1981),Appl. Environ. Microbiol. 41, 430–436.Google Scholar
  11. 11.
    Senac, T. and Hahn-Hägerdal, B. (1990),Appl. Environ. Microbil. 56, 120–126.Google Scholar
  12. 12.
    Mitsuhashi, S. and Lampen, J. O. (1953),J. Biol. Chem. 204, 1011–1018.Google Scholar
  13. 13.
    Hochster, R. M. and Watson, R. W. (1954),Arch. Biochem. Biophys. 48, 120–129.CrossRefGoogle Scholar
  14. 14.
    Slein, M. W. (1955),J. Am. Chem. Soc. 77, 1663–1667.CrossRefGoogle Scholar
  15. 15.
    Tewari, Y. B., Steckler, D. K., and Goldberg, R. N. (1985),Biophys. Chem. 22, 181–185.CrossRefGoogle Scholar
  16. 16.
    Hahn-Hägerdal, B., Berner, S., and Skoog, K. (1986),Appl. Microbiol. Biotechnol. 24, 287–293.CrossRefGoogle Scholar
  17. 17.
    Lastick, S. M., Tucker, M. Y., Beyette, J. R., Noll, G. R., and Grohman, K. (1989),Appl. Microbiol. Biotechnol. 30, 574–579.CrossRefGoogle Scholar
  18. 18.
    Lighthelm, M. E., Prior, B. A., and du Prez, J. C. (1988),Appl. Microbiol. Biotechnol. 28, 63–68.Google Scholar
  19. 19.
    Chung, I. S. and Lee, Y. Y. (1986),Enzyme Microb. Technol. 8(8), 503–507.CrossRefGoogle Scholar
  20. 20.
    Skoog, K. and Hahn-Hägerdal, B. (1989),Biotechnol. Lett. 11(1), 1–6.CrossRefGoogle Scholar
  21. 21.
    Lohmeier-Vogel, E., Skoog, K., Vogel, H., and Hahn-Hägerdal, B. (1989),Appl. Environ. Microbiol. 55, 1974–1980.Google Scholar
  22. 22.
    du Prez, J. C, van Driessel, B., and Prior, B. A. (1989),Biotechnol. Lett. 11(2), 131–136.CrossRefGoogle Scholar
  23. 23.
    Bruinenberg, P. M., de Bot, P. H. M., van Dijken, J. P., and Scheffers, W. A. (1983),Eur. J. Appl. Microbiol. Biotechnol. 18, 287–292.CrossRefGoogle Scholar
  24. 24.
    Ditzelmuller, G., Kubicek, C. P., Wöhrer, W., and Röhr, M. (1984),Can. J. Microbiol. 30(7), 1330–1336.Google Scholar
  25. 25.
    Verduyn, C, van Kleff, R., Frank, J., Schreuder, H., van Dijken, J. P., and Scheffers, W. A. (1985),Biochem. J. 226, 669–677.Google Scholar
  26. 26.
    Morimoto, S., Tawaratani, T., Azuma, K., Oshima, T., and Sinskey, A. J. (1987),J. Ferment. Technol. 65(1), 17–21.CrossRefGoogle Scholar
  27. 27.
    Rizzi, M., Erlemann, P., Bui-Thanh, N.-A., and Dellweg, H. (1988),Appl. Microbiol. Biotechnol. 29, 148–154.CrossRefGoogle Scholar
  28. 28.
    Bolen, P. L., Roth, K. A., and Freer, S. N. (1986),Appl. Environ. Microbiol. 52, 660–664.Google Scholar
  29. 29.
    Rizzi, M., Harwart, K., Erlemann, P., Bui-Thanh, N.-A., and Dellweg, H. (1989),J. Ferment. Bioeng. 67(1), 20–24.CrossRefGoogle Scholar
  30. 30.
    Rizzi, M., Harwart, K., Bui-Thanh, N.-A., and Dellweg, H. (1989),J. Ferment. Bioeng. 67(1), 25–30.CrossRefGoogle Scholar
  31. 31.
    Bruinenberg, P. M., de Bot, P. H. M., van Dijken, J. P., and Scheffers, W. A. (1984),Appl. Microbiol. Biotechnol. 19, 256–260.CrossRefGoogle Scholar
  32. 32.
    Lighthelm, M. E., Prior, B. A., du Prez, J. C, and Brandt, V. (1988),Appl. Microb. Biotechnol. 28, 293–296.Google Scholar
  33. 33.
    Ditzelmuller, G., Kubicek-Pranz, E. M., Röhr, M., and Kubicek, C. P. (1985)Appl. Microbiol. Biotechnol. 22, 297–299.CrossRefGoogle Scholar
  34. 34.
    Bolen, P. L. and Detroy, R. W. (1985),Biotechnol. Bioeng. 27, 302–307.CrossRefGoogle Scholar
  35. 35.
    Bicho, P. A., Runnals, P. L., Cunningham, J. D., and Lee, H. (1988),Appl. Environ. Microbiol. 54, 50–54.Google Scholar
  36. 36.
    Alexander, N. J. (1985),Biotechnol. Bioeng. 27, 1739–1744.CrossRefGoogle Scholar
  37. 37.
    Lighthelm, M. E., Prior, B. A., and du Prez, J. C. (1988),Biotechnol. Lett. 10(3), 207–212.CrossRefGoogle Scholar
  38. 38.
    Alexander, M. A., Yang, V. W., and Jeffries, T. W. (1988),Appl. Microbiol. Biotechnol. 29, 282–288.Google Scholar
  39. 39.
    Schvester, P., Robinson, C. W., and Moo-Young, M. (1983),Biotechnol. Bioeng. Symp. 13, 131–152.Google Scholar
  40. 40.
    Amin, G., Khallafall, G., and Doelle, H. W. (1988),Appl. Microbiol. Biotech-nol. 27, 325–332.Google Scholar
  41. 41.
    Lighthelm, M. E., Prior, B. A., and du Prez, J. C. (1988),Appl. Microbiol. Biotechnol. 29, 67–71.CrossRefGoogle Scholar
  42. 42.
    Maleszka, R. and Schneider, H. (1984),Arch. Biochem. Biophys. 228, 22–30.CrossRefGoogle Scholar
  43. 43.
    Schneider, H. (1989),CRC Crit. Rev. Biotechnol. 9(1), 1–40.CrossRefGoogle Scholar
  44. 44.
    Lohmeier-Vogel, E. and Hahn-Hägerdal, B. (1985),Appl. Microbiol. Biotechnol. 21, 167–172.CrossRefGoogle Scholar
  45. 45.
    du Preez, J. C, Bosch, M, and Prior, B. A. (1987),Appl. Microbiol. Biotechnol. 25, 521–525.CrossRefGoogle Scholar
  46. 46.
    du Prez, J. C, van Driesse, L. B., and Prior, B. A. (1989),Appl. Microbiol. Biotechnol. 30, 53–58.Google Scholar
  47. 47.
    Chung, I. S. and Lee, Y. Y. (1985),Enzyme Microb. Technol. 7(5), 217–219.Google Scholar
  48. 48.
    Jones, R. P. (1989),Enzyme Microb. Technol. 11(3), 130–153.CrossRefGoogle Scholar
  49. 49.
    Kilian, S. G. and van Uden, N. (1988),Appl. Microbiol. Biotechnol. 27, 545–548.Google Scholar
  50. 50.
    Does, A. L. and Bisson, L. F. (1989),Appl. Microbiol. Biotechnol. 55, 159–164.Google Scholar
  51. 51.
    Panchal, C. J., Bast, L., Russell, I., and Stewart, G. (1988),Can. J. Microbiol. 34(5), 1316–1320.CrossRefGoogle Scholar
  52. 52.
    Clark, T. A. and Mackie, K. L. (1984),J. Chem. Tech. Biotechnol. 34, 101–110.Google Scholar
  53. 53.
    Yu, S., Wayman, M., and Parekh, S. K. (1987),Biotechnol. Bioeng. 29, 1144–1150.CrossRefGoogle Scholar
  54. 54.
    Lodics, T. and Gong, C. S. (1984),Biotechnol. Bioeng. Symp. 14, 303–307.Google Scholar
  55. 55.
    Parekh, S. R., Yu, S., and Wayman, M. (1986),Appl. Microbiol. Biotechnol. 25, 300–304.CrossRefGoogle Scholar
  56. 56.
    Björling, T. and Lindman, B. (1989),Enzyme Microb. Technol. 11(4), 240–246.CrossRefGoogle Scholar
  57. 57.
    Lindén, T. and Hahn-Hägerdal, B. (1989),Enzyme Microb. Technol. 11(9), 583–589.CrossRefGoogle Scholar
  58. 58.
    Parekh, S. R., Parekh, R. S., and Wayman, M. (1987),Process Biochem. 6, 85–91.Google Scholar
  59. 59.
    Beck, M. J., Johnson, R. D. and Baker, C. S. (1989), llth Symp. of Biotechnology for Fuels and Chemicals, Colorado Springs, Colorada, USA, May 8–12, p. 67.Google Scholar
  60. 60.
    Chen, W. P. (1980),Process. Biochem. 15, 30–35.Google Scholar
  61. 61.
    Chen, W. P. (1980),Process. Biochem. 15, 36–41.Google Scholar
  62. 62.
    Yamanaka, K. (1968),Biochim. Biophys. Acta 151, 670–680.Google Scholar
  63. 63.
    Hupkes, J. V. and van Tilburg, R. (1976),Die Stärke,28, 10.CrossRefGoogle Scholar
  64. 64.
    Lindén, T. and Hahn-Hägerdal, B. (1989),Biotech. Techniques 3(3), 189–192.CrossRefGoogle Scholar
  65. 65.
    Pontremoli, S., Bonsignore, A., Grazi, E., and Horecker, B. L. (1960),J. Biol. Chem. 235, 1881–1887.Google Scholar
  66. 66.
    Pontremoli, S., Bandini, B. D., Bonsignor, E. A., and Horecker, B. L. (1961),Proc. Natl. Acad. Sci. USA 47, 1942–1949.CrossRefGoogle Scholar
  67. 67.
    Serrano, R. and DelaFuente, G. (1974),Mol. Cell Biochem. 5, 161–171.CrossRefGoogle Scholar
  68. 68.
    Busturia, A. and Lagunas, R. (1986),J. Gen. Microbiol. 132, 379–385.Google Scholar
  69. 69.
    DelaFuente, G. (1970),Eur. J. Biochem. 16, 240–243.CrossRefGoogle Scholar
  70. 70.
    Fernandez, R., Herrero, P., and Moren, F. (1985),J. Gen. Microbiol. 131, 2705–2709.Google Scholar
  71. 71.
    Schuddemat, J., van den Broek, P. J. A., and van Steveninck, J. (1986),Biochim Biophys. Acta 861, 489–493.CrossRefGoogle Scholar
  72. 72.
    Batt, C. A., Carvallo, S., Easson, D. D., Jr., Akedo, M., and Sinskey, A. J. (1986),Biotechnol. Bioeng. 28, 549–553.CrossRefGoogle Scholar
  73. 73.
    Ho, N. Y. and Chang, S. F. (1989),Enzyme Microb. Technol. 11(7), 417–421.CrossRefGoogle Scholar
  74. 74.
    Sarthy, A. V., McConaughy, B. L., Lobo, Z., Sundstrom, J. A., Furlong, C. E., and Hall, B. D. (1987),Appl. Environ. Microbiol. 53, 1996–2000.Google Scholar
  75. 75.
    Chan, E.-C, Ueng, P. P., and Chen, L. F. (1989),Appl. Microbiol. Biotechnol. 31, 524–528.CrossRefGoogle Scholar
  76. 76.
    Amore, R., Wilhelm, M., and Hollenberg, C. P. (1989),Appl. Microbiol. Biotechnol. 30, 351–357.CrossRefGoogle Scholar
  77. 77.
    Kurose, N., Murata, K, and Kimura, A. (1987),Agric. Biol. Chem. 59(9), 2575–2578.Google Scholar
  78. 78.
    Stevis, P. E., Huang, J. J., and Ho, N. W. Y. (1987),Appl. Environ. Microbiol. 53, 2975–2977.Google Scholar
  79. 79.
    Clark, T., Wedlock, N., Janes, A. P., Deverell, K., and Thornton, R. J. (1986),Biotechnol. Lett. 8(11), 801–806.CrossRefGoogle Scholar
  80. 80.
    Gupthar, A. S. (1987),Curr. Genet. 12, 605–610.CrossRefGoogle Scholar
  81. 81.
    Ingram, L. O. and Conway, T. (1988),Appl. Environ. Microbiol. 54, 397–404.Google Scholar
  82. 82.
    Alterthum, F. and Ingram, L. O. (1989),Appl. Environ. Microbiol. 55, 1943–1948.Google Scholar
  83. 83.
    Matthyssens, G. (1989), 10th Enzyme Engineering Conference, Sept. 24–29.Google Scholar
  84. 84.
    Sicard, P. J., Leleu, J.-B., Duflot, P., Drocourt, D., Martin, F., Tiraby, G., Petsko, G., and Glasfeld, A. (1989), 10th Enzyme Engineering Conference, Sept. 24–29.Google Scholar

Copyright information

© Humana Press Inc. 1991

Authors and Affiliations

  • Bärbel Hahn-HäGerdal
    • 1
  • Torbjörn Lindén
    • 1
  • Thomas Senac
    • 1
  • Kerstin Skoog
    • 1
  1. 1.Applied MicrobiologyLund University Chemical CenterSweden

Personalised recommendations