Biologia Plantarum

, Volume 16, Issue 6, pp 406–411 | Cite as

Pyruvate metabolism in germinating seeds during natural anaerobiosis

  • Sylva Leblová
  • Eva Sinecká
  • Věra Vaníčková
Article

Abstract

Lactate as well as ethanol is formed in seeds of soybean, maize, pea, bean, lentil and broad-bean in the course of germination during the so-called natural anaerobiosis. After 0 to 30 h of germination a concentration peak of lactate appears. Maximum in ethanol content is found after 40 h. The amount of ethanol is higher big more than one order of magnitude as compared to the amount of lactate. Both products of anaerobiosis occur in germinating seeds irrespective of the type of reserve substances.

In contrast to alcohol dehydrogenase lactate dehydrogenase (EC 1. 1. 1. 27) is present in the dry seeds too. Its activity decreases during the first 12 h of germination. It is in this stage that its substrate, lactate, is usually present at a maximal concentration. During the later stages of germination the amount of lactate decreases and enzyme activity rises. There exists a reciprocal relationship between enzyme activity and substrate concentration. In the case of alcohol dehydrogenases (EC 1. 1. 1. 1) the maximum concentration of ethanol precedes the peak of enzyme activity.

Additional index words

lactate ethanol lactate dehydrogenase ethanol dehydrogenase 

Metabolismus pyruvátu v klíčících semenech během přirozené anaerobiosy rostlin

Abstract

Zjistily jsme, že u soji, kukuřice, hrachu, fazolu, čočky a bobu se tvoří při klíčení během tzv. přirozené anaerobiosy jak laktát, tak také ethanol. Nejprve dosahuje maxima koncentrace laktát v rozmezí prvých 0–36 hodin klíčení a poté přibližně po 40 hodinách klíčení ethanol. Množství ethanolu je o více než řád vyšší než množství laktátu. Oba produkty anaerobiosy se vyskytují v klíčících semenech bez ohledu na typ reservních látek.

Laktátdehydrogenasa (EC 1.1.1.27) je přítomna na rozdíl od alkoholdehydrogenasy i v suchém semeni. Její aktivita během prvých 12 h klíčení klesá. Právě v té době je obvykle maximální koncentrace jejího substrátu, tzn. laktátu. V dalších hodinách klíčení se množství laktátu snižuje a aktivita enzymu stoupá. Mezi aktivitou enzymu a množstvím substrátu existuje reciproký stav. Pokud jde o aktivitu alkoholdehydrogenasy (EC 1.1.1.1), maximum koncentrace ethanolu předchází maximu aktivity enzymu.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. App, A. A., Meiss, A. N.: Effect of aeration on rice alcohol dehydrogenase.—Arch. Biochem. Biophys.77: 181–190, 1958.CrossRefPubMedGoogle Scholar
  2. Babson, A. L., Phillips, G. E.: A rapid colorimetric assay for serum lactic dehydrogenase.— Clin. chim. Acta12: 210–215, 1965.CrossRefPubMedGoogle Scholar
  3. Barker, J., El Saifi, A. F.: Studies in the respiratory and carbohydrate metabolism of plant tissue. I. Experimental studies of the formation of CO2, lactic acid and other products in potato tubers under anaerobic conditions.—Proc. roy. Soc. (London) B140: 362–384, 1952.CrossRefGoogle Scholar
  4. Barker, J., El Saifi, A. F.: Studies in the respiratory and carbohydrate metabolism of plant tissue. II. Interrelationship between the rates of production of CO2, lactic acid and of alcohol in potato tubers under anaerobic conditions.—Proc. roy. Soc. (London) B140: 385–402, 1952.CrossRefGoogle Scholar
  5. Barker, J., El Saifi, A. F.: Studies in the respiratory and carbohydrate metabolism of plant tissue. III. Experimental studies of the formation of CO2 and changes in lactic acid and other products in potato tubers in air following anaerobic conditions.—Proc. roy. Soc. (London) B140: 508–522, 1952.CrossRefGoogle Scholar
  6. Barker, J., El Saifi, A. F.: Studies in the respiratory and carbohydrate metabolism of plant tissue. IV. The relation between the rate of CO2 production in potato tubers in air following anaerobic conditions, and the accompanying changes in lactic acid content and sugar concentration. Proc. roy. Soc. (London) B140: 522–555, 1952.CrossRefGoogle Scholar
  7. Barker, J., Mapson, L. W.: Studies in the respiratory and carbohydrate metabolism of plant tissue. VI. Analysis of the interrelationships between the rate of CO2 production and the changes in the content of lactic acid, sucrose and of certain fraction of keto-acids in potato tubers in air following anaerobic conditions.—Proc. roy. Soc. (London) B141: 338–361, 1963.CrossRefGoogle Scholar
  8. Barron, E. Sg., Link, G. K. K., Klein, R. M., Michael, E. E.: The metabolism of potato slices.—Arch. Biochem. Biophys.28: 377–398, 1950.Google Scholar
  9. Barthová, J., Leblová, S.: Influence of light and darkness on the concentration of lactic, glycolic, succinic, malic and citric acid in pea plants.—Biol. Plant.11: 97–109, 1969.CrossRefGoogle Scholar
  10. Cameron, D. S., Cossins, E. A.: Studies of intermediary metabolism in germinating pea cotyledons. —Biochem. J.105: 323–331, 1967.PubMedCentralCrossRefPubMedGoogle Scholar
  11. Cossins, E. A.: Formation and metabolism of lactic acid during germination of pea seedlings.— Nature203: 989, 1964.CrossRefGoogle Scholar
  12. Crawford, R. M. M., McMaumon, M.: Inductive responses of alcohol and malic dehydrogenases. J. exp. Bot.19: 435, 1968.CrossRefGoogle Scholar
  13. Davies, D. D.: Metabolic control in higher plants. In:Milborrow, B. V.: (ed.) Biosynthesis and its Control in Plants, p. 1–20. Academic Press, London-New York 1973.Google Scholar
  14. Hageman, R. H., Flesher, D.: The effect of anaerobic environment on the activity of alcohol dehydrogenase.—Arch. biochem. Biophys.87: 203–209, 1960.CrossRefPubMedGoogle Scholar
  15. Hullin, R. P., Noble, R. L.: Determination of lactic acid in microgram quantities.—Biochem. J.55: 289–291, 1953.PubMedCentralCrossRefPubMedGoogle Scholar
  16. King, J.: The isolation, properties and physiological role of lactic dehydrogenase from soy bean cotyledons.—Canad. J. Bot.48: 533–540, 1970.CrossRefGoogle Scholar
  17. Leblová, S., Zimáková, I., Sofrová, D., Barthová, J.: Occurence of ethanol in pea plants in the course of growth under normal and anaerobic conditions.—Biol. Plant.11: 417–423, 1969.CrossRefGoogle Scholar
  18. Leblová, S., Barthová, J., Zimáková, I., Sofrová, D.: Anaerobní metabolismus rostlin. Vznik a odbourávání etanolu. [Anaerobic metabolism of plants, formation and degradation of ethanol.]—Final Research Report, Natural Science Faculty, Charles University, Prague 1971.Google Scholar
  19. Lowe, C., James, W. O.: Carrot tissue and ethanol.—New Phytol.59: 288, 1960.CrossRefGoogle Scholar
  20. Racker, E.: Crystaline alcohol dehydrogenase from bakers yeast.—J. biol. Chem.184: 313–319, 1950.PubMedGoogle Scholar
  21. Scott, C., Hadden, N., Bonneli, E. J.: Analysis of Alcoholic Beverages.—Varian Aerograph, California 1966.Google Scholar
  22. Sherwin, T., Simon, E. W.: The appearance of lactic acid in phaseolus seeds germinating under wet conditions. J. exp. Bot.20: 776–785, 1969.CrossRefGoogle Scholar
  23. Suzuki, Y., Kyuwa, K.: Aotivation and inactivation of alcohol dehydrogenase in germinating pea cotyledons.—Physiol. Plant.:27: 121–125, 1972.CrossRefGoogle Scholar
  24. Widmark, E. M. P.: Eine Mikromethode zur Bestimmung von Aethylalcohol in Blut.—Biochem. Z.131: 471–480, 1923.Google Scholar

Copyright information

© Institute of Experimental Botany 1974

Authors and Affiliations

  • Sylva Leblová
    • 1
  • Eva Sinecká
    • 1
  • Věra Vaníčková
    • 1
  1. 1.Department of Biochemisty, Natural Sciences FacultyCharles UniversityPraha

Personalised recommendations