A degenerate Newton’s map in two complex variables: Linking with currents

  • Roland K. W. Roeder
Article

Abstract

Little is known about the global structure of the basins of attraction of Newton’s method in two or more complex variables. We make the first steps by focusing on the specific Newton mapping to solve for the common roots of P(x, y) = x(1−x) and Q(x, y) = y2 + Bxy − y.

There are invariant circles S0 and S1 within the lines x = 0 and x = 1 which are superattracting in the x-direction and hyperbolically repelling within the vertical line. We show that S0 and S1 have local super-stable manifolds, which when pulled back under iterates of N form global super-stable spaces W0 and W1. By blowing-up the points of indeterminacy p and q of N and all of their inverse images under N we prove that W0 and W1 are real-analytic varieties.

We define linking between closed 1-cycles in Wi (i = 0, 1) and an appropriate closed 2 current providing a homomorphism lk: H1 (Wi, ℤ) → ℚ. If Wi intersects the critical value locus of N, this homomorphism has dense image, proving that H1 (Wi, ℤ) is infinitely generated. Using the Mayer-Vietoris exact sequence and an algebraic trick, we show that the same is true for the closures of the basins of the roots\(\overline {W(r_i )} \)

Math Subject Classifications

37F20 32Q55 32H50 58K15 

Key Words and Phrases

Complex dynamics Newton’s Method homology linking numbers invariant currents 

References

  1. [1]
    Abramov, L. M. and Rohlin, V. A. Entropy of a skew product of mappings with invariant measure,Vestnik Leningrad. Univ. 17(7), 5–13, (1962).MathSciNetGoogle Scholar
  2. [2]
    Bedford, E., Lyubich, M., and Smillie, J. Polynomial diffeomorphisms of ℂ2, IV, The measure of maximal entropy and laminar currents,Invent. Math. 112(1), 77–125, (1993).CrossRefMathSciNetMATHGoogle Scholar
  3. [3]
    Bedford, E. and Smillie, J. Polynomial diffeomorphisms of C2: Currents, equilibrium measure and hyperbolicity,Invent. Math. 103(1), 69–99, (1991).CrossRefMathSciNetMATHGoogle Scholar
  4. [4]
    Bedford, E. and Smillie, J. Polynomial diffeomorphisms of C2, II, Stable manifolds and recurrence,J. Amer. Math. Soc. 4(4), 657–679, (1991).CrossRefMathSciNetMATHGoogle Scholar
  5. [5]
    Bedford, E. and Smillie, J. Polynomial diffeomorphisms of ℂ2, III, Ergodicity, exponents and entropy of the equilibrium measure,Math. Ann. 294(3), 395–420, (1992).CrossRefMathSciNetMATHGoogle Scholar
  6. [6]
    Bedford, E. and Smillie, J. Polynomial diffeomorphisms of ℂ2, V, Critical points and Lyapunov exponents,J. Geom. Anal. 8(3), 349–383, (1998).MathSciNetMATHGoogle Scholar
  7. [7]
    Bedford, E. and Smillie, J. Polynomial diffeomorphisms of ℂ2, VI, Connectivity ofJ, Ann. of Math. (2) 148(2), 695–735, (1998).CrossRefMathSciNetMATHGoogle Scholar
  8. [8]
    Bedford, E. and Smillie, J. External rays in the dynamics of polynomial automorphisms of ℂ2, in Complex Geometric Analysis in Pohang (1997),Contemp. Math. 222, 41–79, Amer. Math. Soc., Providence, RI, (1999).Google Scholar
  9. [9]
    Bedford, E. and Smillie, J. Polynomial diffeomorphisms of ℂ2, VII, Hyperbolicity and external rays,Ann. Sci. École Norm. Sup. (4) 32(4), 455–497, (1999).MathSciNetMATHGoogle Scholar
  10. [10]
    Bonifant, A. M. and Dabija, M. Self-maps of ℙ2 with invariant elliptic curves, in Complex Manifolds and Hyperbolic Geometry (Guanajuato, 2001),Contemp. Math. 311, 1–25. Amer. Math. Soc., Providence, RI, (2002).Google Scholar
  11. [11]
    Bonifant, A.M. and Fornæss, J.E. Growth of degree for iterates of rational maps in several variables,Indiana Univ. Math. J. 49(2), 751–778, (2000).CrossRefMathSciNetMATHGoogle Scholar
  12. [12]
    Bott, R. and Tu, L. W. Differential forms in algebraic topology, vol. 82 ofGraduate Texts in Mathematics, Springer-Verlag, New York, 1982.Google Scholar
  13. [13]
    Bredon, G.E. Topology and geometry, vol. 139 ofGraduate Texts in Mathematics, Springer-Verlag, New York, 1993.Google Scholar
  14. [14]
    Briend, J.-Y. Exposants de Liapounof et points périodiques d’endomorphismes holomorphes de ℂℙk, Ph. D. thesis, Toulouse, (1997).Google Scholar
  15. [15]
    Briend, J.-Y. and Duval, J. Deux caractérisations de la mesure d’équilibre d’un endomorphisme de Pk(C),Publ. Math. Inst. Hautes Études Sci. 93, 145–159, (2001).MathSciNetMATHGoogle Scholar
  16. [16]
    Brolin, H. Invariant sets under iteration of rational functions,Ark. Mat. 6, 103–144, (1965).CrossRefMathSciNetMATHGoogle Scholar
  17. [17]
    Demailly, J.-P. Courants positifs et théorie de l’intersection,Gaz. Math. 53, 131–159, (1992).MathSciNetMATHGoogle Scholar
  18. [18]
    Devaney, R. and Nitecki, Z. Shift automorphisms in the Hénon mapping,Comm. Math. Phys. 67(2), 137–146, (1979).CrossRefMathSciNetMATHGoogle Scholar
  19. [19]
    Diller, J. Dynamics of birational maps ofP 2,Indiana Univ. Math. J. 45(3), 721–772, (1996).CrossRefMathSciNetMATHGoogle Scholar
  20. [20]
    Dinh, T.-C. and Sibony, N. Dynamique des applications d’allure polynomiale,J. Math. Pures Appl. (9) 82(4), 367–423, (2003).MathSciNetMATHGoogle Scholar
  21. [21]
    Dinh, T.-C. and Sibony, N. Dynamics of regular birational maps in ℙk,J. Funct. Anal. 222(1), 202–216, (2005).CrossRefMathSciNetMATHGoogle Scholar
  22. [22]
    Dujardin, R. Hénon-like mappings in ℂ2,Amer. J. Math. 126(2), 439–472, (2004).CrossRefMathSciNetMATHGoogle Scholar
  23. [23]
    Favre, C. and Jonsson, M. Brolin’s theorem for curves in two complex dimensions,Ann. Inst. Fourier (Grenoble) 53(5), 1461–1501, (2003).MathSciNetMATHGoogle Scholar
  24. [24]
    Fornæss, J. E. Dynamics in several complex variables, vol. 87 ofCBMS Regional Conference Series in Mathematics, Published for the Conference Board of the Mathematical Sciences, Washington, DC, (1996).Google Scholar
  25. [25]
    Fornæss, J.E. and Sibony, N. Complex dynamics in higher dimension, I,Astérisque 222(5), 201–231, 1994. Complex analytic methods in dynamical systems (Rio de Janeiro), (1992).Google Scholar
  26. [26]
    Fornæss, J. E. and Sibony, N. Complex dynamics in higher dimensions, in Complex potential theory (Montreal, PQ, 1993), vol. 439 ofNATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 131–186. Kluwer Acad. Publ., Dordrecht, Notes partially written by Estela A. Gavosto, (1994).Google Scholar
  27. [27]
    Fornæss, J. E. and Sibony, N. Complex dynamics in higher dimension, II, in Modern methods in complex analysis (Princeton, NJ, 1992), vol. 137 ofAnn. of Math. Stud. 135–182. Princeton University Press, Princeton, NJ, (1995).Google Scholar
  28. [28]
    Griffiths, P. and Harris, J.Principles of Algebraic Geometry, Wiley-Interscience [John Wiley & Sons], New York, Pure and Applied Mathematics, 1978.MATHGoogle Scholar
  29. [29]
    Guedj, V. Dynamics of quadratic polynomial mappings of ℂ2,Michigan Math. J. 52(3), 627–648, (2004).CrossRefMathSciNetMATHGoogle Scholar
  30. [30]
    Guedj, V. Ergodic properties of rational mappings with large topological degree,Ann. of Math. (2) 161, 1589–1607, (2005).MathSciNetMATHCrossRefGoogle Scholar
  31. [31]
    Hatcher, A.Algebraic Topology, Cambridge University Press, Cambridge, 2002.MATHGoogle Scholar
  32. [32]
    Heinemann, S.-M. Julia sets of skew products in C2,Kyushu J. Math. 52(2), 299–329, (1998).CrossRefMathSciNetMATHGoogle Scholar
  33. [33]
    Hubbard, J., Papadopol, P., and Veselov, V. A compactification of Hénon mappings in C2 as dynamical systems,Acta Math. 184(2), 203–270, (2000).CrossRefMathSciNetMATHGoogle Scholar
  34. [34]
    Hubbard, J. H. and Oberste-Vorth, R. W. Hénon mappings in the complex domain, I, The global topology of dynamical space,Inst. Hautes Études Sci. Publ. Math. 79, 5–46, (1994).CrossRefMathSciNetMATHGoogle Scholar
  35. [35]
    Hubbard, J. H. and Oberste-Vorth, R. W. Hénon mappings in the complex domain, II, Projective and inductive limits of polynomials, in Real and complex dynamical systems (Hillerød, 1993), vol. 464 ofNATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 89–132, Kluwer Acad. Publ., Dordrecht, (1995).Google Scholar
  36. [36]
    Hubbard, J. H. and Oberste-Vorth, R. W. Linked solenoid mappings and the non-transversality locus invariant,Indiana Univ. Math. J. 50(1), 553–566, (2001).CrossRefMathSciNetMATHGoogle Scholar
  37. [37]
    Hubbard, J. H. and Papadopol, P. Newton’s method applied to two quadratic equations in ℂ2 viewed as a global dynamical system, to appear in theMem. Amer. Math. Soc. Google Scholar
  38. [38]
    Hubbard, J. H. and Papadopol, P. Superattractive fixed points in Cn,Indiana Univ. Math. J. 43(1), 321–365, (1994).CrossRefMathSciNetMATHGoogle Scholar
  39. [39]
    Jonsson, M. Dynamics of polynomial skew products on C2,Math. Ann. 314(3), 403–447, (1999).CrossRefMathSciNetMATHGoogle Scholar
  40. [40]
    Kantorovič, L. V. On Newton’s method,Trudy Mat. Inst. Steklov. 28, 104–144, (1949).MathSciNetGoogle Scholar
  41. [41]
    Mañé, R., Sad, P., and Sullivan, D. On the dynamics of rational maps,Ann. Sci. École Norm. Sup. (4) 16(2), 193–217, (1983).MATHGoogle Scholar
  42. [42]
    Milnor, J. W.Dynamics in One Complex Variable, Friedr. Vieweg & Sohn, Braunschweig, Introductory lectures, 1999.MATHGoogle Scholar
  43. [43]
    Milnor, J. W.Topology from the Differentiable Viewpoint, Based on notes by David W. Weaver, The University Press of Virginia, Charlottesville, Va, 1965.MATHGoogle Scholar
  44. [44]
    Papadantonakis, K. Fractalasm. A fast, generalized fractal exploration program, http://www.math. cornell.edu/~dynamics/FA/index.html.Google Scholar
  45. [45]
    Rolfsen, D. Knots and links, vol. 7 ofMathematics Lecture Series, Publish or Perish Inc., Houston, TX, (corrected reprint of the 1976 original), 1990.Google Scholar
  46. [46]
    Russakovskii, A. and Shiffman, B. Value distribution for sequences of rational mappings and complex dynamics,Indiana Univ. Math. J. 46(3), 897–932, (1997).CrossRefMathSciNetMATHGoogle Scholar
  47. [47]
    Sester, O. Hyperbolicité des polynômes fibrés,Bull. Soc. Math. France 127(3), 393–428, (1999).MathSciNetMATHGoogle Scholar
  48. [48]
    Sibony, N. Dynamique des applications rationnelles de Pk, in Dynamique et géométrie complexes (Lyon, 1997), vol. 8 ofPanor. Synthèses 97–185, Soc. Math. France, Paris, (1999).Google Scholar
  49. [49]
    Smillie, J. Complex dynamics in several variables, in Flavors of geometry, vol. 31 ofMath. Sci. Res. Inst. Publ. 117–150, Cambridge University Press, Cambridge, (with notes by Gregery T. Buzzard), (1997).Google Scholar
  50. [50]
    Sumi, H. A correction to the proof of a lemma in Dynamics of sub-hyperbolic and semi-hyperbolic rational semigroups and skew products,Ergodic Theory Dynam. Systems 21(4), 1275–1276, (2001).CrossRefMathSciNetMATHGoogle Scholar
  51. [51]
    Sumi, H. Dynamics of sub-hyperbolic and semi-hyperbolic rational semigroups and skew products,Ergodic Theory Dynam. Systems 21(2), 563–603, (2001).CrossRefMathSciNetMATHGoogle Scholar
  52. [52]
    Ueda, T. Fatou sets in complex dynamics on projective spaces,J. Math. Soc. Japan 46(3), 545–555, (1994).MathSciNetMATHGoogle Scholar

Copyright information

© Mathematica Josephina, Inc. 2007

Authors and Affiliations

  • Roland K. W. Roeder
    • 1
  1. 1.Fields InstituteTorontoCanada

Personalised recommendations