Univalence criteria for lifts of harmonic mappings to minimal surfaces

Article

Abstract

A general criterion in terms of the Schwarzian derivative is given for global univalence of the Weierstrass-Enneper lift of a planar harmonic mapping. Results on distortion and boundary regularity are also deduced. Examples are given to show that the criterion is sharp. The analysis depends on a generalized Schwarzian defined for conformai metrics and on a Schwarzian introduced by Ahlfors for curves. Convexity plays a central role.

Math Subject Classifications

30C99 31A05 53A10 

Key Words and Phrases

Harmonic mapping Schwarzian derivative curvature minimal surface 

References

  1. [1]
    Ahlfors, L. Cross-ratios and Schwarzian derivatives in ℝn, inComplex Analysis: Articles Dedicated to Albert Pfluger on the Occasion of his 80th Birthday, Hersch, J. and Huber, A., Eds., Birkhäuser Verlag, Basel, 1–15, (1989).Google Scholar
  2. [2]
    Chuaqui, M., Duren, P., and Osgood, B. The Schwarzian derivative for harmonic mappings,J. Anal. Math. 91, 329–351,(2003).MathSciNetMATHCrossRefGoogle Scholar
  3. [3]
    Chuaqui, M., Duren, P., and Osgood, B. Curvature properties of planar harmonic mappings,Comput. Methods Fund. Theory 4, 127–142, (2004).MathSciNetMATHGoogle Scholar
  4. [4]
    Chuaqui, M., Duren, P., and Osgood, B. Ellipses, near ellipses, and harmonic Möbius transformations,Proc. Amer. Math. Soc. 133, 2705–2710, (2005).CrossRefMathSciNetMATHGoogle Scholar
  5. [5]
    Chuaqui, M., Duren, P., and Osgood, B. Schwarzian derivatives and uniform local univalence,Comput. Methods Funct. Theory, to appear.Google Scholar
  6. [6]
    Chuaqui, M. and Gevirtz, J. Simple curves in ℝn and Ahlfors’ Schwarzian derivative,Proc. Amer. Math. Soc. 132, 223–230, (2004).CrossRefMathSciNetMATHGoogle Scholar
  7. [7]
    Chuaqui, M. and Osgood, B. AnextensionofatheoremofGehringandPommerenke,Israel J. Math. 91, 393–407, (1995).CrossRefMathSciNetMATHGoogle Scholar
  8. [8]
    Chuaqui, M. and Osgood, B. Finding complete conformai metrics to extend conformai mappings,Indiana Univ. Math. J. 47, 1273–1291, (1998).CrossRefMathSciNetMATHGoogle Scholar
  9. [9]
    Chuaqui, M. and Osgood, B. General univalence criteria in the disk: Extensions and extremal functions,Ann. Acad. Sci. Fenn. Math. 23, 101–132, (1998).MathSciNetMATHGoogle Scholar
  10. [10]
    Dierkes, U., Hildebrandt, S., Küster, A., and Wohlrab, O.Minimal Surfaces I: Boundary Value Problems, Springer-Verlag, New York, 1992.Google Scholar
  11. [11]
    do Carmo, M.Differential Geometry of Curves and Surfaces, Prentice-Hall, Englewood Cliffs, NJ, 1976.MATHGoogle Scholar
  12. [12]
    Duren, P.Harmonic Mappings in the Plane, Cambridge University Press, Cambridge, UK, 2004.MATHGoogle Scholar
  13. [13]
    Essén, M. and Keogh, F. The Schwarzian derivative and estimates of functions analytic in the unit disk,Math. Proc. Comb. Phil. Soc. 78, 501–511, (1975).MATHGoogle Scholar
  14. [14]
    Gehring, F.W. and Pommerenke, Ch. On the Nehari univalence criterion and quasicircles,Comment. Math. Helv. 59, 226–242, (1984).CrossRefMathSciNetMATHGoogle Scholar
  15. [15]
    Hille, E. Remarks on a paper by Zeev Nehari,Bull. Amer. Math. Soc. 55, 552–553, (1949).CrossRefMathSciNetMATHGoogle Scholar
  16. [16]
    Kraus, W. Über den Zusammenhang einiger Characteristiken eines einfach zusammenhängenden Bereiches mit der Kreissabbildung,Mitt. Math. Sem. dessen 21, 1–28, (1932).Google Scholar
  17. [17]
    Nehari, Z. The Schwarzian derivative and schlicht functions,Bull. Amer. Math. Soc. 55, 545–551, (1949).CrossRefMathSciNetMATHGoogle Scholar
  18. [18]
    Nehari, Z. Some criteria of univalence,Proc. Amer. Math. Soc. 5, 700–704, (1954).CrossRefMathSciNetMATHGoogle Scholar
  19. [19]
    Nehari, Z. Univalence criteria depending on the Schwarzian derivative,Illinois J. Math. 23, 345–351, (1979).MathSciNetMATHGoogle Scholar
  20. [20]
    O’Neill, B.Semi-Riemannian Geometry: With Applications to Relativity, Academic Press, New York, 1983.MATHGoogle Scholar
  21. [21]
    Osgood, B. Old and new on the Schwarzian derivative, inQuasiconformal Mappings in Analysis, Palka, B., Duren, P., Heinonen, J., and Osgood, B., Eds., Springer-Verlag, New York, 275–308, 1998.Google Scholar
  22. [22]
    Osgood, B. and Stowe, D. A generalization of Nehari’s univalence criterion,Comm. Math. Helv. 65, 234–242, (1990).CrossRefMathSciNetMATHGoogle Scholar
  23. [23]
    Osgood, B. and Stowe, D. The Schwarzian derivative and conformai mapping of Riemannian manifolds,Duke Math. J. 67, 57–97, (1992).CrossRefMathSciNetMATHGoogle Scholar
  24. [24]
    Sheil-Small, T. Constants for planar harmonic mappings,J. London Math. Soc. 42, 237–248, (1990).CrossRefMathSciNetMATHGoogle Scholar

Copyright information

© Mathematica Josephina, Inc. 2007

Authors and Affiliations

  1. 1.Universidad Católica de ChileChile
  2. 2.University of MichiganUSA
  3. 3.Stanford UniversityUSA

Personalised recommendations