Advertisement

The Journal of Geometric Analysis

, Volume 14, Issue 2, pp 355–368 | Cite as

Isoperimetric inequality in the Grushin plane

  • Roberto Monti
  • Daniele Morbidelli
Article

Abstract

We prove a sharp isoperimetric inequality in the Grushin plane and compute the corresponding isoperimetric sets.

Math Subject Classifications

53C17 

Key Words and Phrases

Isoperimetric inequality Grushin plane 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Ambrosio, L. Fine properties of sets of finite perimeter in doubling metric measure spaces, Calculus of variations, nonsmooth analysis and related topics,Set-Valued Anal.,10(2–3), 111–128, (2002).CrossRefMathSciNetzbMATHGoogle Scholar
  2. [2]
    Beckner, W. On the Grushin operator and hyperbolic symmetry,Proc. Am. Math. Soc.,129(4), 1233–1246, (2001).CrossRefMathSciNetzbMATHGoogle Scholar
  3. [3]
    Bellaïche, A. The tangent space in sub-Riemannian geometry, inSub-Riemannian Geometry, 1–78,Progr. Math.,144, Birkhäuser, Basel, (1996).Google Scholar
  4. [4]
    Capogna, L., Danielli, D., and Garofalo, N. The geometric Sobolev embedding for vector fields and the isoperimetric inequality,Comm. Anal. Geom.,12, 203–215, (1994).MathSciNetGoogle Scholar
  5. [5]
    Chavel, I.Isoperimetric Inequalities, Differential Geometric and Analytic Perspectives, Cambridge Tracts in Mathematics,145, Cambridge University Press, Cambridge, (2001).zbMATHGoogle Scholar
  6. [6]
    De Giorgi, E. Sulla proprietà isoperimetrica dell’ipersfera, nella classe degli insiemi aventi frontiera orientata di misura finita,Atti Accad. Naz. Lincei. Mem. Cl. Sci. Fis. Mat. Nat. Sez. I (8),5, 33–44, (1958).MathSciNetGoogle Scholar
  7. [7]
    Danielli, D., Garofalo, N., and Nhieu, D.M. Minimal surfaces, surfaces of constant mean curvature and isoperimetry in Carnot groups, preprint.Google Scholar
  8. [8]
    Federer, H. and Fleming, W.H. Normal and integral currents,Ann. Math. (2),72, 458–520, (1960).CrossRefMathSciNetGoogle Scholar
  9. [9]
    Franchi, B., Gallot, S., and Wheeden, R.L. Sobolev and isoperimetric inequalities for degenerate metrics,Math. Ann.,300, 557–571,(1994).CrossRefMathSciNetzbMATHGoogle Scholar
  10. [10]
    Franchi, B. and Lanconelli, E. Une métrique associée à une classe d’opérateurs elliptiques dégénérés, Conference on linear partial and pseudodifferential operators, (Torino, 1982),Rend. Sem. Mat. Univ. Politec. Torino 1983, Special Issue, 105–114.Google Scholar
  11. [11]
    Garofalo, N. and Nhieu, D.M. Isoperimetric and Sobolev inequalities for Carnot-Carathéodory spaces and the existence of minimal surfaces,Comm. Pure Appl. Math.,49, 1081–1144, (1996).CrossRefMathSciNetzbMATHGoogle Scholar
  12. [12]
    Gromov, M. Carnot-Carathéodory spaces seen from within,Sub-Riemannian Geometry, 79–323,Progr. Math.,144, Birkhäuser, (1996).Google Scholar
  13. [13]
    Leonardi, G. and Masnou, S. On the isoperimetric problem in the Heisenberg group, preprint (2002).Google Scholar
  14. [14]
    Leonardi, G. and Rigot, S. Isoperimetric sets on Carnot groups, to appear inHuston J. Math. Google Scholar
  15. [15]
    Maz’ya, V.G. Classes of domains and imbedding theorems for function spaces,Dokl. Acad. Nauk. SSSR,133, 527–530.Google Scholar
  16. [16]
    Monti, R. Brunn-Minkowski and isoperimetric inequality in the Heisenberg group, to appear inAnn. Acad. Sci. Fenn. Math. Google Scholar
  17. [17]
    Monti, R. and Cassano, F.S. Surface measures in Carnot-Carathéodory spaces,Calc. Van,13, 339–376, (2001).CrossRefzbMATHGoogle Scholar
  18. [18]
    Osserman, R. The isoperimetric inequality,Bull. Am. Math. Soc.,84(6), 1182–1238, (1978).CrossRefMathSciNetzbMATHGoogle Scholar
  19. [19]
    Pansu, P. An isoperimetric inequality on the Heisenberg group, Conference on differential geometry on homogeneous spaces (Turin, 1983),Rend. Sem. Mat. Univ. Politec. Torino 1983, Special Issue, 159–174, (1984).Google Scholar
  20. [20]
    Talenti, G.The Standard Isoperimetric Theorem, Handbook of Convex Geometry, vol. A, B, 73–123, North-Holland, Amsterdam, (1993).Google Scholar
  21. [21]
    Varapoulos, N.Th., Saloff-Coste, L., and Coulhon, T.Analysis and Geometry on Groups, Cambridge Tracts in Mathematics,100, Cambridge University Press, Cambridge, (1992).Google Scholar

Copyright information

© Mathematica Josephina, Inc. 2004

Authors and Affiliations

  1. 1.Mathematisches InstitutUniversität BernBernSchweiz
  2. 2.Dipartimento di MatematicaUniversità di BolognaBolognaItaly

Personalised recommendations