The Journal of Geometric Analysis

, 16:409

Dynamics of a two parameter family of plane birational maps: Maximal entropy

  • Eric Bedford
  • Jeff Diller
Article

Abstract

We mix combinatorial with complex methods to study the dynamics of a real two parameter family of plane birational maps. Specifically, we consider the action of the maps on the Picard group of an appropriate compactification of the complex plane, on the homology groups of a forward invariant real subset of this compactification, and on a Markov partition of the real plane determined by the critical set. For the range of parameters considered, the three actions are equivalent. This allows us to construct a measure of maximal entropy on the real nonwandering set, and it allows us to show that all wandering points are attracted to infinity in a well-defined fashion.

Math Subject Classifications

32H50 14E07 37D50 37F20 

Key Words and Phrases

Birational map Markov partition invariant measure 

References

  1. [1]
    Abarenkova, N., Anglès d’Auriac, J.-C., Boukraa, S., Hassani, S., and Maillard, J.-M. From Yang-Baxter equations to dynamical zeta functions for birational transformations, Statistical physics on the eve of the 21st century, 436–490,Ser. Adv. Statist. Mech. 14, World Sci. Publishing, River Edge, NJ, (1999).Google Scholar
  2. [2]
    Abarenkova, N., Anglès d’Auriac, J.-C., Boukraa, S., Hassani, S., and Maillard, J.-M. Rational dynamical zeta functions for birational transformations,Physica A264, 264–293, chao-dyn/9807014, (1999).CrossRefGoogle Scholar
  3. [3]
    Abarenkova, N., Anglès d’Auriac, J.-C., Boukraa, S., Hassani, S., and Maillard, J.-M. Topological entropy and complexity for discrete dynamical systems,Phys. Lett. A 262, 44–49, chao-dyn/9806026, (1999).CrossRefMathSciNetMATHGoogle Scholar
  4. [4]
    Abarenkova, N., Anglès d’Auriac, J.-C., Boukraa, S., and Maillard, J.-M. Growth complexity spectrum of some discrete dynamical systems,Phys. D 130(1–2), 27–42, (1999).CrossRefMathSciNetMATHGoogle Scholar
  5. [5]
    Abarenkova, N., Anglès d’Auriac, J.-C., Boukraa, S., and Maillard, J.-M. Real topological entropy versus metric entropy for birational measure-preserving transformations,Phys. D 144(3–4), 387–433, (2000).CrossRefMathSciNetMATHGoogle Scholar
  6. [6]
    Abarenkova, N., Anglès d’Auriac, J.-C., Boukraa, S., Hassani, S., and Maillard, J.-M. Real Arnold complexity versus real topological entropy for birational transformations,J. Phys. A 33(8), 1465–1501, (2000).CrossRefMathSciNetMATHGoogle Scholar
  7. [7]
    Abarenkova, N., Anglès d’Auriac, J.-C., Boukraa, S., Hassani, S., and Maillard, J.-M. Topological entropy and Arnold complexity for two-dimensional mappings,Phys. Lett. A 262(1), 44–49, (1999).CrossRefMathSciNetMATHGoogle Scholar
  8. [8]
    Bedford, E. and Diller, J. Real and complex dynamics of a family of birational maps of the plane: The golden mean subshift,Amer. J. Math. 127(3), 595–646, (2005).CrossRefMathSciNetMATHGoogle Scholar
  9. [9]
    Bedford, E. and Diller, J. Energy and invariant measures for birational surface maps,Duke Math. J. 128(2), 331–368, (2005).CrossRefMathSciNetMATHGoogle Scholar
  10. [10]
    Bernardo, M., Truong, T., and Rollet, G. The discrete Painlevé I equations: Transcendental integrability and asymptotic solutions,J. Phys. A 34(15), 3215–3252, (2001).CrossRefMathSciNetMATHGoogle Scholar
  11. [11]
    Bellon, M. and Viallet, C. Algebraic entropy,Commun. Math. Phys. 204, 425–437, (1999).CrossRefMathSciNetMATHGoogle Scholar
  12. [12]
    Boukraa, S., Hassani, S., and Maillard, J.-M. New integrable cases of a Cremona transformation: A finite-order orbits analysis,Phys. A 240, 586–621, (1997).CrossRefGoogle Scholar
  13. [13]
    Boukraa, S., Hassani, S., and Maillard, J.-M. Product of involutions and fixed points,Alg. Rev. Nucl. Sci. 2, 1–16, (1998).Google Scholar
  14. [14]
    Boukraa, S., Maillard, J.-M., and Rollet, G. Almost integrable mappings,Int. J. Mod. Phys. B8, 137–174, (1994).MathSciNetGoogle Scholar
  15. [15]
    Diller, J. and Favre, C. Dynamics of bimeromorphic maps of surfaces,Amer. J. Math. 123, 1135–1169,(2001).CrossRefMathSciNetMATHGoogle Scholar
  16. [16]
    Dujardin, R. Laminar currents and birational dynamics,Duke Math. J. 131(2), 219–247, (2006).CrossRefMathSciNetMATHGoogle Scholar
  17. [17]
    Fornæss, J.-E. and Sibony, N. Complex dynamics in higher dimension, II, Modern Methods in Complex Analysis,Ann. of Math. Stud. 137, Princeton University Press, 135–182, (1995).Google Scholar
  18. [18]
    Griffiths, P. and Harris,J. Principles of Algebraic Geometry, Wiley Classics Library, (1994).Google Scholar
  19. [19]
    Guedj, V. Ergodic properties of rational mappings with large topological degree,Ann. of Math. Stud. 161(3), 1589–1607, (2005).MathSciNetMATHCrossRefGoogle Scholar
  20. [20]
    Lind, D. and Marcus, B.An Introduction to Symbolic Dynamics and Coding, Cambridge University Press, Cambridge, (1995).MATHGoogle Scholar
  21. [21]
    Robinson, C. Dynamical systems. Stability, symbolic dynamics, and chaos, 2nd ed.,Stud. Adv. Math. CRC Press, Boca Raton, FL, (1999).Google Scholar

Copyright information

© Mathematica Josephina, Inc. 2006

Authors and Affiliations

  • Eric Bedford
    • 1
    • 2
  • Jeff Diller
    • 1
    • 2
  1. 1.Indiana University Bloomington
  2. 2.University of Notre Dame Notre Dame

Personalised recommendations