The Journal of Geometric Analysis

, Volume 15, Issue 1, pp 83–121 | Cite as

Balls have the worst best Sobolev inequalities

  • Francesco MaggiEmail author
  • Cédric Villani


Using transportation techniques in the spirit of Cordero-Erausquin, Nazaret and Villani [7], we establish an optimal non parametric trace Sobolev inequality, for arbitrary locally Lipschitz domains in ℝn. We deduce a sharp variant of the Brézis-Lieb trace Sobolev inequality [4], containing both the isoperimetric inequality and the sharp Euclidean Sobolev embedding as particular cases. This inequality is optimal for a ball, and can be improved for any other bounded, Lipschitz, connected domain. We also derive a strengthening of the Brézis-Lieb inequality, suggested and left as an open problem in [4]. Many variants will be investigated in a companion article [10].

Math Subject Classifications

26D15 46E35 

Key Words and Phrases

Isoperimetric inequality Sobolev inequality mass transportation trace 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Aubin, T. Problèmes isopérimétriques et espaces de Sobolev,J. Differential Geom. 11(4), 573–598, (1976).MathSciNetzbMATHGoogle Scholar
  2. [2]
    Brenier, Y. Décomposition polaire et réarrangement monotone des champs de vecteurs,C.R. Acad. Sci. Paris Sér. I Math. 305(19), 805–808, (1987).MathSciNetzbMATHGoogle Scholar
  3. [3]
    Brenier, Y. Polar factorization and monotone rearrangement of vector-valued functions,Comm. Pure Appl. Math. 44(4), 375–417, (1991).CrossRefMathSciNetzbMATHGoogle Scholar
  4. [4]
    Brézis, H. and Lieb, E. Sobolev inequalities with a remainder term.J. Funct. Anal. 62, 73–86, (1985).CrossRefMathSciNetzbMATHGoogle Scholar
  5. [5]
    Carlen, E. A. and Loss, M. Extremals of functionals with competing symmetries,J. Funct. Anal. 88(2), 437–456, (1990).CrossRefMathSciNetzbMATHGoogle Scholar
  6. [6]
    Carlen, E. A. and Loss, M. On the minimization of symmetric functionals,Rev. Math. Phys. 6(5A), 1011–1032. Special issue dedicated to Elliott H. Lieb, (1994).CrossRefMathSciNetzbMATHGoogle Scholar
  7. [7]
    Cordero-Erausquin, D., Nazaret, B., and Villani, C. A mass-transportation approach to sharp Sobolev and Gagliardo-Nirenberg inequalities.Adv. Math. 182(2), 307–332, (2004).CrossRefMathSciNetzbMATHGoogle Scholar
  8. [8]
    Evans, L. C. and Gariepy, R. F.Measure Theory and Fine Properties of Functions, CRC Press, Boca Raton, FL, (1992).zbMATHGoogle Scholar
  9. [9]
    Lieb, E. H. and Loss, M.Analysis, 2nd ed. American Mathematical Society, Providence, RI, (2001).zbMATHGoogle Scholar
  10. [10]
    Maggi, F. and Villani, C. Balls have the worst Sobolev inequalities. Part II: Variants and extensions. Work in progress.Google Scholar
  11. [11]
    Maz’ja, V. G.Sobolev Spaces, Springer Series in Soviet Mathematics, Springer-Verlag, Berlin, (1985). Translated from the Russian by T. O. Shaposhnikova.Google Scholar
  12. [12]
    McCann, R. J. A convexity principle for interacting gases.Adv. Math. 128(1), 153–179, (1997).CrossRefMathSciNetzbMATHGoogle Scholar
  13. [13]
    Talenti, G. Best constants in Sobolev inequality.Ann. Mat. Pura Appl. 110(IV), 353–372, (1976).MathSciNetzbMATHGoogle Scholar
  14. [14]
    Villani, C.Topics in Optimal Transportation, Vol. 58 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, (2003).Google Scholar
  15. [15]
    Zhu, M. Some general forms of sharp Sobolev inequalities.J. Funct. Anal. 156(1), 75–120, (1998).CrossRefMathSciNetzbMATHGoogle Scholar

Copyright information

© Mathematica Josephina, Inc. 2005

Authors and Affiliations

  1. 1.Fachbereich MathematikUniversität Duisburg-EssenDuisburgGermany
  2. 2.UMPALyon Cedex 07France

Personalised recommendations