The Journal of Geometric Analysis

, Volume 10, Issue 1, pp 101–108 | Cite as

An interpolation theorem for holomorphic automorphisms ofC n

  • Gregery T. Buzzard
  • Franc Forstneric


We construct automorphisms of C n which map certain discrete sequences one onto another with prescribed finite jet at each point, thus solving a general Mittag-Leffler interpolation problem for automorphisms. Under certain circumstances, this can be done while also approximating a given automorphism on a compact set.

Math Subject Classifications

32H02 32M05 

Key Words and Phrases

interpolation holomorphic automorphism 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Chirka, E.Complex Analytic Sets. Kluwer, Dordrecht, 1989.MATHGoogle Scholar
  2. [2]
    Forstneric, F. Holomorphic automorphism groups of Cn: A survey. The Proceedings Complex Analysis and Geometry, Ancona, V., Ballico, E., Silva, A., Eds., 173–200,Lecture Notes in Pure and Appl. Math.,173, Marcel-Dekker, New York, (1996).Google Scholar
  3. [3]
    Forstneric, F. Interpolation by holomorphic automorphisms and embeddings in Cn,J. Geom. Anal,9, 93–118, (1999).MathSciNetMATHGoogle Scholar
  4. [4]
    Hörmander, L.An Introduction to Complex Analysis in Several Variables, 3rd ed., North Holland, Amsterdam, 1990.MATHGoogle Scholar
  5. [5]
    Rosay, J.-P. and Rudin, W. Holomorphic maps from Cn to Cn,Trans. Am. Math. Soc,310, 47–86, (1988)CrossRefMathSciNetMATHGoogle Scholar

Copyright information

© Mathematica Josephina, Inc. 2000

Authors and Affiliations

  • Gregery T. Buzzard
    • 1
  • Franc Forstneric
    • 2
  1. 1.Department of MathematicsIndiana UniversityBloomington
  2. 2.Department of MathematicsUniversity of WisconsinMadison

Personalised recommendations