The Journal of Geometric Analysis

, Volume 10, Issue 1, pp 101–108 | Cite as

An interpolation theorem for holomorphic automorphisms ofCn

  • Gregery T. Buzzard
  • Franc Forstneric
Article

Abstract

We construct automorphisms ofCnwhich map certain discrete sequences one onto another with prescribed finite jet at each point, thus solving a general Mittag-Leffler interpolation problem for automorphisms. Under certain circumstances, this can be done while also approximating a given automorphism on a compact set.

Math Subject Classifications

32H02 32M05 

Key Words and Phrases

interpolation holomorphic automorphism 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Chirka, E.Complex Analytic Sets. Kluwer, Dordrecht, 1989.MATHGoogle Scholar
  2. [2]
    Forstneric, F. Holomorphic automorphism groups of Cn: A survey. The Proceedings Complex Analysis and Geometry, Ancona, V., Ballico, E., Silva, A., Eds., 173–200,Lecture Notes in Pure and Appl. Math.,173, Marcel-Dekker, New York, (1996).Google Scholar
  3. [3]
    Forstneric, F. Interpolation by holomorphic automorphisms and embeddings in Cn,J. Geom. Anal,9, 93–118, (1999).MathSciNetMATHGoogle Scholar
  4. [4]
    Hörmander, L.An Introduction to Complex Analysis in Several Variables, 3rd ed., North Holland, Amsterdam, 1990.MATHGoogle Scholar
  5. [5]
    Rosay, J.-P. and Rudin, W. Holomorphic maps from Cn to Cn,Trans. Am. Math. Soc,310, 47–86, (1988)CrossRefMathSciNetMATHGoogle Scholar

Copyright information

© Mathematica Josephina, Inc. 2000

Authors and Affiliations

  • Gregery T. Buzzard
    • 1
  • Franc Forstneric
    • 2
  1. 1.Department of MathematicsIndiana UniversityBloomington
  2. 2.Department of MathematicsUniversity of WisconsinMadison

Personalised recommendations