A remark on unique continuation

  • Yifei Pan
  • Thomas Wolff
Article

Abstract

In this paper a unique continuation result is proved for differential inequality of second order.

Math Subject Classifications

35J10 35B60 

Key Words and Phrases

unique continuation Laplace operator 

References

  1. [1]
    Alinhac, S. and Baouendi, M.S. A counterexample to strong unique continuation for partial differential equations of Schrodinger’s type, preprint, (1993).Google Scholar
  2. [2]
    Amrein, W.O., Berthier, A.M., and Georgescu, V.L p inequalities for the laplacian and unique continuation,Ann. Inst. Fourier (Grenoble),31, 153–168, (1981).MathSciNetMATHGoogle Scholar
  3. [3]
    Hormander, L.The Analysis of Linear Partial Differential Operators, Vol. 3, Springer-Verlag, Berlin, 1985.Google Scholar
  4. [4]
    Pan, Y. Unique continuation for Schrodinger operators with singular potentials,Comm. PDE,17, 953–965, (1992).MATHCrossRefGoogle Scholar
  5. [5]
    Regbaoui, R. Prolongement unique pour les operateurs de Schrodinger, thesis, Rennes, (1993).Google Scholar
  6. [6]
    Reed, M. and Simon, B.Methods of Modern Mathematical Physics, Vol. 4, Academic Press, New York, 1979.MATHGoogle Scholar
  7. [7]
    Sogge, C.Fourier Integrals in Classical Analysis, Cambridge University Press, Cambridge, 1993.MATHGoogle Scholar
  8. [8]
    Wolff, T. A counterexample in a unique continuation problem, preprint, June 1993, to appear inCommun. Anal. Geom. Google Scholar

Copyright information

© Mathematica Josephina, Inc. 1998

Authors and Affiliations

  • Yifei Pan
    • 1
  • Thomas Wolff
    • 2
  1. 1.Indiana University-Purdue University at Fort WayneFort Wayne
  2. 2.University of California at BerkeleyUSA

Personalised recommendations