Applied Biochemistry and Biotechnology

, Volume 44, Issue 2, pp 101–117 | Cite as

Production and use of glucosyltransferases fromLeuconostoc mesenteroides NRRL B-1299 for the synthesis of oligosaccharides containing α-(1→2) linkages

  • M. Remaud-Slmeon
  • A. Lopez-Munguia
  • V. Pelenc
  • F. Paul
  • P. Monsan


Glucosyltransferase activities, produced by batch culture ofLeuconostoc mesenteroides NRRL B-1299, were recovered both in the culture supernatant (SGT) and associated with the insoluble part of the culture (IGT). A total glucosyltransferase activity of 3.5 U/mL was measured in batch culture. The enzymes from the supernatant were purified 313 times using aqueous two-phase partition between dextran and PEG phases, yielding a preparation with 18.8 U/mg protein. It was shown that both SGT and IGT preparations catalyze acceptor reactions and transfer the glucose unit from sucrose onto maltose to produce glucooligosaccharides. Some of the glucooligosaccharides synthesized (Ln series) contain α-(l→6) osidic linkages and a maltose residue at the reducing end. They were completely hydrolyzed by glucoamy-lase and dextranase. The other glucooligosaccharides synthesized (Bn series) resisted the action of these enzymes. The tetrasaccharide of this series has been characterized by13C NMR. Its structure was determined as 2–O–α–D–glucosylpanose. The oligosaccharides synthesized by the maltose acceptor reaction with the SGT and IGT preparations only differed in the relative amounts in which they were produced. The difference may arise from diffusional limitations appearing when the insoluble catalyst is used. Under the assay conditions, the glucanase resistant oligosaccharide yield was 35% with both glucosyltrans-ferase preparations.

Index Entries

Glycotechnology glucosyltransferase Leuconostoc mesenteroides acceptor reaction oligosaccharide α-(l→2) osidic linkages 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Morgan, A. J., Mul, A. J., Beldman, G., and Voragen, A. G. J. (1992),Agr. Food-Ind. Hi-Tech. 11/12, 35.Google Scholar
  2. 2.
    Monsan, P., Paul, F., Remaud, M., and Lopez, A. (1989),Food Biotech. 3,11.CrossRefGoogle Scholar
  3. 3.
    Hidaka, H., Hirayama, M., Tokunaga, T., and Eida, T. (1990), inNew Developments in Dietary Fiber, Furda, I., and Brine, C. J., eds., Plenum, New York, pp. 105–117.Google Scholar
  4. 4.
    Sherman-Gold, R. (1991),Genet. Eng. News 2, 1.Google Scholar
  5. 5.
    Rademacher, T. W. (1992),TIBTEC 10, 227.Google Scholar
  6. 6.
    Fujii, S. and Komoto, M. (1991),Zuckerind. 116, 197.Google Scholar
  7. 7.
    Ajisaka, K., Nishida, H., and Fujimoto, H. (1987),Biotech. Lett. 9, 387.CrossRefGoogle Scholar
  8. 8.
    Horikoshi, K., Nakamura, N., Matsuzawa, N., and Yamamoto, M. (1981), inProceedings of the First International Symposium on Cyclodextrins, Szejtli, J., ed., D. Reidel Publishing Co., Dordrecht, Holland, pp. 25–39.Google Scholar
  9. 9.
    Koepsell, H. J., Tsuchiya, H. M., Hellman, N. N., Kasenko, A., Hoffman, C. A., Sharpe, E. S., and Jackson, R. W. (1952),J. Biol. Chem. 200, 793.Google Scholar
  10. 10.
    Tsuchiya, H. M., Hellman, N. N., and Koepsell, H. J. (1953),J. Am. Chem. Soc. 75, 757.CrossRefGoogle Scholar
  11. 11.
    Hehre, E. J. (1953),J. Am. Chem. Soc. 75, 4866.CrossRefGoogle Scholar
  12. 12.
    Jeanes, A., Haynes, W. C., Wilham, C. A., Rankin, J. C, Melvin, E. H., Austin, M. J., Cluskey, J. E., Fisher, B. E., Tsuchiya, H. M., and Rist, C. E. (1954),J. Am. Chem. Soc. 76, 5041.CrossRefGoogle Scholar
  13. 13.
    Seymour, F. R., Knapp, R. D., and Bishop, S. H. (1976),Carbohydr. Res. 51, 179.CrossRefGoogle Scholar
  14. 14.
    Larm, O., Lindberg, B., and Svensson, S. (1971),Carbohydr. Res. 20, 39.CrossRefGoogle Scholar
  15. 15.
    Paul, F., Oriol, E., Auriol, D., and Monsan, P. (1986),Carbohydr. Res. 149, 433.CrossRefGoogle Scholar
  16. 16.
    Remaud, M., Paul, F., Monsan, P., Heyraud, A., and Rinaudo, M. (1991),J. Carbohydr. Chem. 10, 861.CrossRefGoogle Scholar
  17. 17.
    Lopez-Munguia, C. A., Pelenc, V., Remaud, M., Paul, F., Monsan, P., Biton, J., Michel, J. M., and Lang, C. (1990), inEnzyme Engineering 10, vol. 613, Laskin, A. L, Mosbach, K., Thomas, D., and Wingard, Jr.L. B., eds.,Ann. NY Acad. Sci, New York, pp. 717–722.Google Scholar
  18. 18.
    Pelenc, V., Lopez-Munguia, C. A., Remaud, M., Biton, J., Michel, J. M., Paul, F., and Monsan, P. (1991),Sci. Aliments 11, 465.Google Scholar
  19. 19.
    Remaud, M., Paul, F., Monsan, P., Lopez-Munguia, A., Vignon, M. (1992),J. Carbohydr. Chem. 11, 359.CrossRefGoogle Scholar
  20. 20.
    Paul, F., Lopez-Munguia, A., Remaud, M., Pelenc, V., and Monsan, P. (1992),Eur. Patent 0, 325, 872.Google Scholar
  21. 21.
    Seymour, F. R., Slodki, M. E., Plattner, R. D., and Jeanes, A. (1977),Carbohydr. Res. 53, 153.CrossRefGoogle Scholar
  22. 22.
    Seymour, F. R., Chen, E. C. M., and Bishop, S. H. (1979),Carbohydr. Res. 68, 113.CrossRefGoogle Scholar
  23. 23.
    Seymour, F. R., Knapp, R. D., Chen, E. C. M., Jeanes, A., and Bishop, S. H. (1979),Carbohydr. Res. 71, 231.CrossRefGoogle Scholar
  24. 24.
    Kobayashi, M., Shishido, K., Kikuchi, T., and Matsuda, K. (1973),Agric. Biol. Chem. 37, 357.Google Scholar
  25. 25.
    Kobayashi, M., Shishido, K., Kikuchi, T., and Matsuda, K. (1973),Agric. Biol. Chem. 37, 2763.Google Scholar
  26. 26.
    Kobayashi, M. and Matsuda, K. (1974),Biochem. Biophys. Acta 370, 441.Google Scholar
  27. 27.
    Kobayashi, M. and Matsuda, K. (1976),J. Biochem. 79, 1301.Google Scholar
  28. 28.
    Kobayashi, M. and Matsuda, K. (1975),Biochem. Biophys. Acta 397, 69.Google Scholar
  29. 29.
    Kobayashi, M. and Matsuda, K. (1977),Agr. Biol. Chem. 41, 1931.Google Scholar
  30. 30.
    Smith, E. E. (1970),FEBS Lett. 12, 33.CrossRefGoogle Scholar
  31. 31.
    Hehre, E. J. and Suzuki, H. (1966),Arch. Biochem. Biophys. 113, 675.CrossRefGoogle Scholar
  32. 32.
    Paul, F., Monsan, P., and Auriol, D. (1984),Eur. Patent 0,125,981.Google Scholar
  33. 33.
    Sumner, J. B. and Howell, S. F. (1935),J. Biol. Chem. 108, 51.Google Scholar
  34. 34.
    Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951),J. Biol. Chem. 193, 265.Google Scholar
  35. 35.
    Bourne, E. J., Hutson, D. H., and Weigel, H. (1963),Biochem. J. 86, 555.Google Scholar
  36. 36.
    Taylor, C, Cheetham, N. W. H., and Walker, G. J. (1985),Carbohydr. Res. 137, 1.CrossRefGoogle Scholar
  37. 37.
    Pazur, J. H. and Ando, T. (1960),J. Biol. Chem. 235, 297.Google Scholar
  38. 38.
    Pazur, J. H. and Kleppe, K. (1962),J. Biol. Chem. 237, 1002.Google Scholar
  39. 39.
    Coxon, B. (1980),Dev. Food Carbohydr. 2, 351.Google Scholar
  40. 40.
    Heyraud, A., Rinaudo, M., Vignon, M. R., and Vincendon, M. (1979),Biopolymers 18, 167.CrossRefGoogle Scholar
  41. 41.
    Dorman, D. E. and Roberts, J. D. (1971),J. Am. Chem. Soc. 93, 4463.CrossRefGoogle Scholar
  42. 42.
    Seymour, F. R., Knapp, R. D., Bishop, S. H., and Jeanes, A. (1979),Carbohydr. Res. 68, 123.CrossRefGoogle Scholar
  43. 43.
    Seymour, F. R., Knapp, R. D., and Bishop, S. H. (1979),Carbohydr. Res. 72, 229.CrossRefGoogle Scholar
  44. 44.
    Valette, P., Pelenc, V., Djouzy, Z., Andrieux, C, Paul, F., Monsan, P., and Szylit, O. (1993),J. Sci. Food. Agric. 62, 121.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc 1994

Authors and Affiliations

  • M. Remaud-Slmeon
    • 1
  • A. Lopez-Munguia
    • 2
  • V. Pelenc
    • 3
  • F. Paul
    • 3
  • P. Monsan
    • 3
  1. 1.IUT Biologie AppliquéeAuchFrance
  2. 2.Institute de Biotecnologia UNAMCuernauaca, MorelosMexico
  3. 3.BioEuropeToulouse cedexFrance

Personalised recommendations