Critical orbits of holomorphic maps on projective spaces

Article

Abstract

We study the dynamics of iterated holomorphic maps of a complex projective space onto itself. Relations between the Fatou set and the orbits of critical points are investigated. In particular, results concerning critically finite maps on the Riemann sphere are generalized to higher dimensional case.

References

  1. [1]
    Beardon, A.F.Iteration of Rational Functions, Springer-Verlag, Berlin, 1991.MATHGoogle Scholar
  2. [2]
    Brolin, H. Invariant sets under iteration of rational functions,Ark. Mat.,6, 103–144, (1965).CrossRefMathSciNetMATHGoogle Scholar
  3. [3]
    Fatou, P. Sur les équations fonctionnelles,Bull. Soc. Math. France,47, 161–271, (1919);48, 33–94 and 208–314, (1920).MathSciNetGoogle Scholar
  4. [4]
    Fornaess, J.E. and Sibony, N. Critically finite rational maps in P2,Contemporary Math.,137, 245–260, (1992).MathSciNetGoogle Scholar
  5. [5]
    Fornaess, J.E. and Sibony, N. Complex dynamics in higher dimension I, Complex analytic methods in dynamical systems, Astérisque,222, 201–231, (1994).MathSciNetGoogle Scholar
  6. [6]
    Fornaess, J.E. and Sibony, N. Complex dynamics in higher dimension II, Modern methods in complex analysis,Ann. of Math. Stud.,137, 135–182, (1995).MathSciNetGoogle Scholar
  7. [7]
    Giesecke, B. Simpliziale Zerlegung abzählbarer analytischer Räume,Math. Z.,83, 177–213, (1964).CrossRefMathSciNetMATHGoogle Scholar
  8. [8]
    Grauert, H. and Remmert, R. Komplexe Räume,Math. Ann.,136, 245–318, (1958).CrossRefMathSciNetMATHGoogle Scholar
  9. [9]
    Grauert, H. and Remmert, R.Coherent Analytic Sheaves, Springer-Verlag, Berlin, 1984.MATHGoogle Scholar
  10. [10]
    Hubbard, J. and Papadopol, P. Superattractive fixed points in Cn,Indiana Univ. Math. J.,43, 321–365, (1994).CrossRefMathSciNetMATHGoogle Scholar
  11. [11]
    Kobayashi, S.Hyperbolic Manifolds and Holomorphic Mappings, Marcel Dekker, New York, 1970.MATHGoogle Scholar
  12. [12]
    Koopman, B.O. and Brown, A.B. On the covering of analytic loci by complexes,Trans. Am. Math. Soc.,34, 231–251, (1932).CrossRefMathSciNetMATHGoogle Scholar
  13. [13]
    Milnor, J.Dynamics in One Complex Variable: Introductory Lectures, preprint, SUNY, Stony Brook, 1990.Google Scholar
  14. [14]
    Narasimhan, R. Several complex variables,Chicago Lectures in Math., (1971).Google Scholar
  15. [15]
    Stein, K. Analytische Zerlegungen komplexer Räume,Math. Ann.,132, 63–93, (1956).CrossRefMathSciNetMATHGoogle Scholar
  16. [16]
    Sullivan, D. Quasiconformal homeomorphisms and dynamics I,Ann. Math.,122, 401–418, (1985).CrossRefMathSciNetGoogle Scholar
  17. [17]
    Suzuki, M.Group Theory I, Springer-Verlag, Berlin, 1980.Google Scholar
  18. [18]
    Ueda, T. Complex dynamical systems on projective spaces, Advanced Series in Dynamical Systems,13, Chaotic Dynamical Systems,World Scientific Publ., 120–138, (1993).Google Scholar
  19. [19]
    Ueda, T. Fatou sets in complex dynamics on projective spaces,J. Math. Soc. Japan,46, 545–555, (1994).MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Mathematica Josephina, Inc. 1998

Authors and Affiliations

  1. 1.Division of Mathematics, Faculty of Integrated Human StudiesKyoto UniversityKyotoJapan

Personalised recommendations