The Journal of Geometric Analysis

, Volume 4, Issue 1, pp 105–120

On a stopping process for oscillatory integrals

  • D. H. Phong
  • E. M. Stein
Article

Abstract

In this paper we introduce a stopping process to analyze oscillatory integral operators with degenerate phases. The resulting bounds give smoothing properties for averages along variable families of curves inRn with two-sided torsion.

Math Subject Classification

42-xx 42 B20 42 B25 35 Sxx 

Key Words and Phrases

Degenerate phases dyadic cubes Radon transforms torsion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [BF]
    Beals, R., and Fefferman, C. On local solvability of linear partial differential equations.Ann. of Math. 97, 482–498 (1973).CrossRefMathSciNetGoogle Scholar
  2. [FP]
    Fefferman, C., and Phong, D. H. Symplectic geometry and positivity of pseudo-differential operators.Proc. Natl. Acad. Sci. U.S.A. 80, 7697–7701 (1983).CrossRefGoogle Scholar
  3. [GU1]
    Greenleaf, A., and Uhlmann, G. Estimates for singular Radon transforms and pseudo-differential operators with singular symbols.J. Funct. Anal. 89, 202–232 (1990).CrossRefMathSciNetMATHGoogle Scholar
  4. [GU2]
    Greenleaf, A., and Uhlmann, G. Composition of some singular Fourier integral operators and estimates for restricted X-ray transforms, I.Ann. Inst. Fourier 40, 443–466 (1990); II,Duke Math. J. 64, 415–444 (1991).MathSciNetMATHGoogle Scholar
  5. [G]
    Guillemin, V. Cosmology in 2+1 dimensions, cyclic models, and deformations.Ann. Math. Stud. (1990).Google Scholar
  6. [J]
    Journe, J. L. A covering lemma for product spaces.Proc. Amer. Math. Soc. 96, 593–598 (1986).CrossRefMathSciNetMATHGoogle Scholar
  7. [MT]
    Melrose, R., and Taylor, M. Near peak scattering and the corrected Kirchhoff approximation for a convex obstacle.Adv. in Math. 44, 242–315 (1985).CrossRefMathSciNetGoogle Scholar
  8. [PS]
    Pan, Y., and Sogge, C. Oscillatory integrals associated to canonical folding relations.Colloq. Math. 40, 413–419 (1990).MathSciNetGoogle Scholar
  9. [PS1]
    Phong, D. H., and Stein, E. M. Radon transforms and torsion.Int. Math. Res. Notices 4, 49–60 (1991).CrossRefMathSciNetGoogle Scholar
  10. [PS2]
    Phong, D. H., and Stein, E. M. Models of degenerate Fourier integral operators and Radon transforms.Ann. of Math. (to appear).Google Scholar
  11. [PS3]
    Phong, D. H., and Stein, E. M. Operator versions of the van der Corput lemma and Fourier integral operators.Mathematical Research Letters 1, 27–33 (1994).MathSciNetMATHGoogle Scholar
  12. [Se]
    Seeger, A. Degenerate Fourier integral operators in the plane.Duke Math. J. (to appear).Google Scholar
  13. [St1]
    Stein, E. M.Singular Integrals and Differentiability Properties of Functions. Princeton, NJ: Princeton University Press 1971.Google Scholar
  14. [St2]
    Stein, E. M.Harmonic Analysis: Real Variable Methods, Almost-Othogonality, and Oscillatory Integrals. Princeton, NJ: Princeton University Press 1993.Google Scholar

Copyright information

© Mathematica Josephina, Inc. 1994

Authors and Affiliations

  • D. H. Phong
    • 1
    • 2
  • E. M. Stein
    • 1
    • 2
  1. 1.Department of MathematicsColumbia UniversityNew York
  2. 2.Department of MathematicsPrinceton UniversityPrinceton

Personalised recommendations