Weakly monotone functions

  • Juan J. Manfredi
Article

Abstract

The definition of monotone function in the sense of Lebesgue is extended to the Sobolev spacesW1,p,p >n − 1. It is proven that such weakly monotone functions are continuous except in a singular set ofp-capacity zero that is empty in the casep =n. Applications to the regularity of mappings with finite dilatation appearing in nonlinear elasticity theory are given.

Math Subject Classification

35J70 30C65 

Key Words and Phrases

Finite dilatation monotone functions 

References

  1. [B]
    Ball, J. Convexity conditions and existence theorems in nonlinear elasticity.Arch. Rational Mech. Anal. 63, 337–403 (1978).CrossRefGoogle Scholar
  2. [BI]
    Bojarski, B., and Iwaniec, T. Analytical foundations of the theory of quasiconformal mappings in ℝn.Ann. Acad. Sci. Fenn. Ser. A I Math. 8, 257–324 (1983).MathSciNetMATHGoogle Scholar
  3. [G]
    Gehring, F. Rings and quasiconformal mappings in space.Trans. Amer. Math. Soc. 101, 499–519 (1961).CrossRefMathSciNetMATHGoogle Scholar
  4. [HK]
    Hayman, W., and Kennedy, P.Subharmonic Functions, Academic Press, 1976.Google Scholar
  5. [HKM]
    Heinonen, J., Kilpeläinen, T., and Martio, O.Nonlinear Potential Theory of Degenerate Elliptic Equations. Oxford University Press, 1993.Google Scholar
  6. [L]
    Lebesgue, H. Sur le problème de Dirichlet.Rend. Circ. Palermo 27, 371–402 (1907).Google Scholar
  7. [M]
    Mostow, G. Quasiconformal mappings inn-space and the rigidity of hyperbolic space forms.Publ. Math. Inst. Hautes Études Sci. 34, 53–104 (1968).CrossRefMathSciNetMATHGoogle Scholar
  8. [MV]
    Manfredi, J., and Villamor, E. Traces of monotone Sobolev functions.Journal of Geometric Analysis, to appear.Google Scholar
  9. [R]
    Rešetnyak, J. Space mappings with bounded distortion.Sibirisk. Mat. Z. 8, 629–658 (1967).Google Scholar
  10. [S]
    Šverák, V. Regularity properties of deformations with finite energy.Arch. Rational Mech. Anal. 100, 105–127 (1988).MathSciNetMATHGoogle Scholar
  11. [VP]
    Vodopyanov, S., and Goldstein, V. Quasiconformal mappings and spaces of functions with generalized first derivatives.Siberian Math. J. 17(3), 515–531 (1977).Google Scholar

Copyright information

© Mathematica Josephina, Inc. 1994

Authors and Affiliations

  • Juan J. Manfredi
    • 1
  1. 1.Department of MathematicsUniversity of PittsburghPittsburgh

Personalised recommendations