Global Mizohata structures

  • Howard Jacobowitz
Article
  • 30 Downloads

Abstract

The Mizohata partial differential operator is generalized to global structures on compact two-dimensional manifolds. A generalization of the Hopf Theorem on vector fields is used to show that a first integral can exist if and only if the genus is even. The Mizohata structures on the sphere are classified by the diffeomorphism group of the circle modulo the Moebius subgroup and a necessary and sufficient condition, expressed in terms of the associated diffeomorphism, is given for the existence of a first integral.

Math Subject Classification

35F05 58G03 

Key Words and Phrases

CR diffeomorphism group of the circle Euler characteristic Hopf Theorem global differential operator Mizohata Moebius transformation nonsolvable 

References

  1. [Ak]
    Akahori. A new approach to the local embedding theorem of CR-structures. Memoirs of the AMS, No. 366 (1987).Google Scholar
  2. [Be]
    Bell, S. Mapping problems in complex analysis and the\(\overline \partial \) problem. Bull. A.M.S.22, 233–259 (1990).CrossRefMATHGoogle Scholar
  3. [BCH]
    Bergamasco, A., Cordaro, P., and Hounie, J. Global properties of a class of vector fields in the plane. J. Diff. Eq.24, 179–199 (1988).CrossRefMathSciNetGoogle Scholar
  4. [BdM]
    Boutet de Monvel, L. Intégration des équations de Cauchy-Riemann induites formelles Séminaire Goulaouie-Lions-Schwartz, Exposé IX, 1974–1975.Google Scholar
  5. [BEM]
    Brooks, B., Eliashberg, Y., and McMullen, C. The spectral geometry of flat disks. Duke Math. J.61, 119–131 (1990).CrossRefMathSciNetMATHGoogle Scholar
  6. [Ch]
    Chern, S. S. Curves and surfaces in Euclidean space. In: Studies in Global Geometry and Analysis, edited by S. S. Chern. Mathematical Association of America 1967.Google Scholar
  7. [HJ]
    Hanges, N., and Jacobowitz, H. Involutive structures on compact manifolds. Preprint.Google Scholar
  8. [Hi]
    Hille, E. Analytic Function Theory. Vol. 2. Chelsea Publishing Co. 1973.Google Scholar
  9. [Ho]
    Hounie, J. Mizohata structures on the sphere. Trans. AMS., to appear.Google Scholar
  10. [Ho1]
    Hounie, J. Nonexistence of a homotopy formula for a Mizohata complex inR 3. Personal communication.Google Scholar
  11. [HM]
    Hounie, J., and Malagutti, P. Local integrability of Mizohata structures. Transactions A.M.S., to appear.Google Scholar
  12. [Ja]
    Jacobowitz, H. Homogeneous solvability and CR structures. Notas de Curso No. 25, Universidade Federal de Pernambuco, Recife, Brazil (1988).Google Scholar
  13. [Ku]
    Kuranishi, M. Strongly pseudoconvex CR structures over small balls, III. Annals Math.116, 249–330 (1982).CrossRefMathSciNetGoogle Scholar
  14. [Mi]
    Milnor, J. Topology from the Differentiable Viewpoint. Charlottesville, VA: University Press of Virginia, 1965.MATHGoogle Scholar
  15. [Ni]
    Nirenberg, L. Lectures on Linear Partial Differential Equations. Providence, RI: American Mathematical Society 1973.MATHGoogle Scholar
  16. [NR]
    Nagel, A., and Rosay, J. P. Approximate local solutions of ∂b, but nonexistence of homotopy formulas for (0,1) forms on hypersurfaces in C3. Duke Math. J.58, 823–827 (1989).CrossRefMathSciNetMATHGoogle Scholar
  17. [Os]
    Osborrn, H. Vector Bundles. New York: Academic Press 1982.Google Scholar
  18. [Sj]
    Sjöstrand, J. Note on a paper of F. Treves concerning Mizohata type operators. Duke Math. J.47, 601–608 (1980).CrossRefMathSciNetMATHGoogle Scholar
  19. [Ti]
    Titus, C. The combinatorial topology of analytic functions on the boundary of a disk.Acta Math. 106, 45–64 (1961).CrossRefMathSciNetMATHGoogle Scholar
  20. [Tr1]
    Treves, F. Remarks about certain first-order linear PDE in two variables. Comm. PDE5, 381–125 (1980).MathSciNetCrossRefGoogle Scholar
  21. [Tr2]
    Treves, F. Introduction to Pseudodifferential and Fourier Integral Operators. Vol. 2. New York: Plenum Press 1980.MATHGoogle Scholar

Copyright information

© CRC Press, Inc 1993

Authors and Affiliations

  • Howard Jacobowitz
    • 1
  1. 1.Department of MathemeticsRutgers UniversityCamdenUSA

Personalised recommendations