Zeta and eta functions for Atiyah-Patodi-Singer operators

  • Gerd Grubb
  • Robert T. Seeley
Article

Abstract

This paper concerns Dirac-type operatorsP on manifoldsX with boundary which are “product-type” near the boundary. That is,\(P = \sigma \left( {\frac{\partial }{{\partial x_n }} + A} \right)\) for a unitary morphism σ and a self-adjoint first-order operatorA onbdry(X);xn denotes the normal coordinate. For a realizationPB defined by a boundary operatorB of Atiyah-Patodi-Singer type, the paper gives a complete description of the singularities of the traces of the meromorphic continuations of Γ(s)Di)s and Γ(s)DPi)s where Δ1 =PB*PB, Δ2 =PBPB*, andD is any differential operator onX which is tangential and independent of 4xn nearbdry(X). This implies expansions for the associated heat kernels and resolvents, containing the usual powers (with both “local” and “global” coefficients) together with logarithmic terms.

References

  1. [APS]
    Atiyah, M. F., Patodi, V. K., and Singer, I. M. Spectral asymmetry and Riemannian geometry, I.Math. Proc. Camb. Phil. Soc. 77, 43–69 (1975).MathSciNetMATHCrossRefGoogle Scholar
  2. [BF]
    Bismut, J.-M., and Freed, D. S. The analysis of elliptic families, II.Comm. Pure Appl. Math. 107, 103–163 (1986).MathSciNetMATHGoogle Scholar
  3. [B]
    Bourbaki, N.Fonctions d’une variable réelle. Vol. IV, Ed. Hermann, Paris, 1951.MATHGoogle Scholar
  4. [BG]
    Branson, T. P., and Gilkey, P. B. Residues of the eta function for an operator of Dirac type.J. Funct. Analysis 108, 47–87 (1992).CrossRefMathSciNetMATHGoogle Scholar
  5. [DG]
    Duistermaat, J. J., and Guillemin, V. W. The spectrum of positive elliptic operators and periodic bicharacteristics.Inventiones Math. 29, 39–79 (1975).CrossRefMathSciNetMATHGoogle Scholar
  6. [DW]
    Douglas, R. G., and Wojciechowski, K. P. Adiabatic limits of the η-invariants, the odd dimensional Atiyah-Patodi-Singer problem.Comm. Math. Phys. 142, 139–168 (1991)CrossRefMathSciNetMATHGoogle Scholar
  7. [GiS]
    Gilkey, P. B., and Smith, L. The eta invariant for a class of elliptic boundary value problems.Comm. Pure Appl. Math. 36, 85–131 (1983).CrossRefMathSciNetMATHGoogle Scholar
  8. [Gre]
    Greiner, P. An asymptotic expansion for the heat equation.Arch. Rat. Mech. Anal. 41, 163–218 (1971).CrossRefMathSciNetMATHGoogle Scholar
  9. [G1]
    Grubb, G. Functional Calculus of Pseudo-Differential Boundary Problems,Progress in Math. Vol. 65, Birkhäuser, Boston, 1986. Second Edition 1996.Google Scholar
  10. [G2]
    Grubb, G. Heat operator trace expansions and index for general Atiyah-Patodi-Singer boundary problems.Comm. Part. Diff. Equ. 17, 2031–2077 (1992).CrossRefMathSciNetMATHGoogle Scholar
  11. [GS1]
    Grubb, G., and Seeley, R. T. Weakly parametric pseudodifferential operators and Atiyah-Patodi-Singer boundary problems.Inventiones Math. 121, 481–529 (1995).CrossRefMathSciNetMATHGoogle Scholar
  12. [GS2]
    Grubb, G., and Seeley, R. T. Développements asymptotiques pour l’opérateur d’Atiyah-Patodi-Singer.C. R. Acad. Sci. Paris 317, 1123–1126(1993).MathSciNetMATHGoogle Scholar
  13. [M]
    Melrose, R. B. The Atiyah-Patodi-Singer Index Theorem. A. K. Peters Ltd, Wellesley, MA, 1993.MATHGoogle Scholar
  14. [MP]
    Minakshisundaram, S., and Pleijel, Å. Some properties of the eigenfunctions of the Laplace operator on Riemannian manifolds.Canad. J. Math. 1, 242–256 (1949).MathSciNetMATHGoogle Scholar
  15. [S]
    Seeley, R. T. Complex powers of an elliptic operator.AMS Proc. Symp. Pure Math. X, 1966. Amer. Math. Soc., Providence, pp. 288–307, 1967.Google Scholar
  16. [Sh]
    Shubin, M. A.Pseudodifferential Operators and Spectral Theory. Springer Verlag, Heidelberg, 1978.Google Scholar
  17. [Si]
    Singer, I. M.The η-invariant and the index, Mathematical Aspects of String Theory. (S.-T. Yau, ed.), World Scientific Press, Singapore, pp. 239–258, 1988.Google Scholar

Copyright information

© Mathematica Josephina, Inc. 1996

Authors and Affiliations

  • Gerd Grubb
    • 1
    • 2
  • Robert T. Seeley
    • 1
    • 2
  1. 1.Department of MathematicsUniversity of CopenhagenDenmark
  2. 2.Department of MathematicsUniversity of Massachussetts at BostonUSA

Personalised recommendations