Endocrine Pathology

, 3:165

Secretory vesicle and cell surface markers for human endocrine pancreatic and pituitary tumors

  • G. Lahr
  • K. Langley
  • C. Vereczkey
  • O. Gratzl
  • M. Gratzl


  1. 1.
    Acheson A, Sunshine JL, Rutishauser U. NCAM polysialic acid can regulate both cell-cell and cell-substrate interactions. J Cell Biol 114:143–153, 1991.PubMedCrossRefGoogle Scholar
  2. 2.
    Aletsee-Ufrecht MC, Langley OK, Gratzl O, Gratzl M. Differential expression of the neural cell adhesion molecule NCAM 140 in human pituitary tumors. FEBS Lett 272:45–49, 1990.PubMedCrossRefGoogle Scholar
  3. 3.
    Barthels D, Vopper G, Boned A, Cremer H, Wille M. High degree of NCAM diversity generated by alternative RNA splicing in brain and muscle. Eur J Neurosci 4:327–337, 1992.PubMedCrossRefGoogle Scholar
  4. 4.
    Bassetti M, Huttner WB, Zanini A, Rosa P. Co-localization of secretogranins/chromogranins with thyrotropin and luteinizing hormone in secretory granules of cow anterior pituitary. J Histochem Cytochem 38: 1353–1363, 1990.PubMedGoogle Scholar
  5. 5.
    Bergmann M, Lahr G, Mayerhofer A, Gratzl M. Expression of synaptophysin during the prenatal development of the rat spinal cord: Correlation with basic differentiation processes of neurons. Neuroscience 42:569–582, 1991.PubMedCrossRefGoogle Scholar
  6. 6.
    Betz H. Homology and analogy in transmembrane channel design: Lessons from synaptic membrane proteins. Biochemistry 29: 3591–3599, 1990.PubMedCrossRefGoogle Scholar
  7. 7.
    Betz H. Ligand-gated ion channels in the brain: The amino acid receptor superfamily. Neuron 5:383–392, 1990.PubMedCrossRefGoogle Scholar
  8. 8.
    Bixby JL. Identification of an alternatively spliced avian member of the synaptophysin gene family. Mol Brain Res 13:339–348, 1992.PubMedCrossRefGoogle Scholar
  9. 9.
    Bock E, Helle KB. Localization of synaptin on synaptic vesicle membranes, synaptosomal plasma membranes and chromaffin granule membranes. FEBS Lett 82:316–322, 1978.Google Scholar
  10. 10.
    Brose N, Petrenko AG, Südhof TC, Jahn R. Synaptotagmin: A calcium sensor on the synaptic vesicle surface. Science 256: 1021–1025, 1992.PubMedCrossRefGoogle Scholar
  11. 11.
    Cunningham BA, Hemperly JJ, Murray BA, Prediger EA, Bruckenbury R, Edelman GM. Neural cell adhesion molecule: Structure, immunoglobulin-like domains, cell surface modulation, and alternative RNA splicing. Science 236:799–805, 1987.PubMedCrossRefGoogle Scholar
  12. 12.
    Deftos LJ. Chromogranin A: Its role in endocrine function and as an endocrine and neuroendocrine tumor marker. Endocr Rev 12:181–187, 1991.PubMedGoogle Scholar
  13. 13.
    Deftos LJ, O’Connor DT, Wilson CB, Fitzgerald PA. Human pituitary tumors secrete chromogranin-A. J Clin Endocrinol Metab 68:869–872, 1989.PubMedGoogle Scholar
  14. 14.
    DeStephano DB, Lloyd RV, Pike AM, Wilson BS. Pituitary adenomas: An immunohistochemical study of hormone production and chromogranin localization. Am J Pathol 116: 464–472, 1984.PubMedGoogle Scholar
  15. 15.
    Doherty P, Moolenaar CECK, Ashton SV, Michalides RJAM, Walsh FS. The VASE exon downregulates the neurite growth-promoting activity of NCAM 140. Nature 356:791–793, 1992.PubMedCrossRefGoogle Scholar
  16. 16.
    Edelman GM, Crossin KL. Cell adhesion molecules: Implications for molecular histology. Annu Rev Biochem 60:155–189, 1991.PubMedCrossRefGoogle Scholar
  17. 17.
    Ehrhart M, Grube D, Bader MF, Aunis D, Gratzl M. Chromogranin A in the pancreatic islet: Cellular and subcellular distribution. J Histochem Cytochem 12:1673–1682, 1986.Google Scholar
  18. 18.
    Ehrhart M, Jörns A, Grube D, Gratzl M. Cellular distribution and amount of chromogranin A in bovine endocrine pancreas. J Histochem Cytochem 36:467–472, 1988.PubMedGoogle Scholar
  19. 19.
    Eisenbarth GS, Shimizu K, Bowring MA, Wells S. Expression of receptors for tetanus toxin and monoclonal antibody A2B5 by pancreatic islet cells. Proc Natl Acad Sci USA 79:5066–5070, 1982.PubMedCrossRefGoogle Scholar
  20. 20.
    Fischer-Colbrie R, Schmid KW, Mahata SK, Mahata A, Laslop A, Bauer JW. Sex-related differences in chromogranin A, chromogranin B and secretogranin II gene expression in rat pituitary. J Neuroendocrinol 4:125–129, 1992.CrossRefGoogle Scholar
  21. 21.
    Frawley LS, Boockfor FR. Mammosomatotropes: Presence and functions in normal and neoplastic pituitary tissue. Endocr Rev 12: 337–355, 1991.PubMedGoogle Scholar
  22. 22.
    Geppert M, Archer BTI, Südhof TC. Synaptotagmin II. A novel differentially distributed form of synaptotagmin. J Biol Chem 266: 13548–13552, 1991.PubMedGoogle Scholar
  23. 23.
    Goridis C, Rougon GN, Him M, Santoni M-J, Gennarini G, Deagostini-Bazin H, Jordan AG, Kiefer H, Steinmetz M. Isolation of mouse N-CAM-related cDNA. Detection and cloning using monoclonal antibodies. EMBOJ 4:631–635, 1985.Google Scholar
  24. 24.
    Gould VE, Wiedenmann B, Lee I, Schwechheimer K, Dockhorn-Dworniczak B, Radosevich JA, Moll R, Franke WW. Synaptophysin expression in neuroendocrine neoplasms as determined by immunocytochemistry. Am J Pathol 126:243–257, 1987.PubMedGoogle Scholar
  25. 25.
    Gratzl M, Langley OK, eds. Markers for neural and endocrine cells. Molecular and cell biology, diagnostic applications, 1st ed. Weinheim: VCH-Verlagsgemeinschaft, 1991.Google Scholar
  26. 26.
    Grube D, Aunis D, Bader F, Cetin Y, Jörns A, Yoshie S. Chromogranin A (CGA) in the gastro-entero-pancreatic (GEP) endocrine system I. CGA in the mammalian endocrine pancreas. Histochem J 85:441–452, 1986.CrossRefGoogle Scholar
  27. 27.
    Heitz PU, Landolt AM, Zenklusen H-R, Kasper M, Reubi J-C, Oberholzer M, Roth J. Immunocytochemistry of pituitary tumors. J Histochem Cytochem 35:1005–1011, 1987.PubMedGoogle Scholar
  28. 28.
    Hirsch M-R, Gaugler L, Deagostini-Bazin H, Bally-Cui L, Goridis C. Identification of positive and negative regulatory elements governing cell-type-specific expression of the neural cell adhesion molecule gene. Mol Cell Biol 10:1959–1968, 1990.PubMedGoogle Scholar
  29. 29.
    Horvath E, Kovacs K. The adenohypophysis. In: Kovacs K, Asa SL, eds. Functional endocrine pathology, 1st ed. Boston: Blackwell Scientific Publications, 1991. Pp 245–281.Google Scholar
  30. 30.
    Huttner WB, Gerdes H-H, Rosa P. Chromogranins/secretogranins—widespread constituents of the secretory granule matrix in endocrine cells and neurons. In: Gratzl M, Langley K, eds. Markers for neural and endocrine cells. Molecular and cell biology, diagnostic applications, 1st ed. Weinheim: VCH-Verlagsgesellschaft, 1991. Pp 93–131.Google Scholar
  31. 31.
    Jahn R, De Camilli P. Membrane proteins of synaptic vesicles: Markers for neurons and neuroendocrine cells; tools for the study of neurosecretion. In: Gratzl M, Langley K, eds. Markers for neural and endocrine cells. Molecular and cell biology, diagnostic applications, 1st ed. Weinheim: VCH-Verlagsgesellschaft, 1991. Pp 25–92.Google Scholar
  32. 32.
    Jahn R, Schiebler W, Ouimet C, Greengard P. A 38,000-dalton membrane protein (p38) present in synaptic vesicles. Proc Natl Acad Sci USA 82:4137–4141, 1985.PubMedCrossRefGoogle Scholar
  33. 33.
    Jin L, Hemperly JJ, Lloyd RV. Expression of neural cell adhesion molecule in normal and neoplastic human neuroendocrine tissues. Am J Pathol 138:961–969, 1991.PubMedGoogle Scholar
  34. 34.
    Karin M. Complexities of gene regulation by cAMP. Trends Genet 5:65–67, 1989.PubMedCrossRefGoogle Scholar
  35. 35.
    Klöppel G, In’t Veld PA, Stamm B, Heitz PU. The endocrine pancreas. In: Kovacs K, Asa SL, eds. Functional endocrine pathology, 1st ed. Boston: Blackwell Scientific Publications, 1991. Pp 396–457.Google Scholar
  36. 36.
    Knaus P, Marquèze-Pouey B, Scherer H, Betz H. Synaptoporin, a novel putative channel protein of synaptic vesicles. Neuron 5:453–462, 1990.PubMedCrossRefGoogle Scholar
  37. 37.
    Lahr G, Heiss C, Mayerhofer A, Schilling K, Parmer RJ, O’Connor DT, Gratzl M. Chromogranin A in the olfactory system of the rat. Neuroscience 39:605–611, 1990.PubMedCrossRefGoogle Scholar
  38. 38.
    Lahr G, Mayerhofer A, Bergmann M, Takiyyuddin MA, Gratzl M. Chromogranin A in neurons of the rat cerebellum and spinal cord: Quantification and sites of expression. J Histochem Cytochem 40:993–999, 1992PubMedGoogle Scholar
  39. 39.
    Langley OK, Aletsee MC, Gratzl M. Endocrine cells share expression of N-CAM with neurones. FEBS Lett 220:108–112, 1987.PubMedCrossRefGoogle Scholar
  40. 40.
    Langley OK, Aletsee-Ufrecht MC, Grant NJ, Gratzl M. Expression of the neural cell adhesion molecule NCAM in endocrine cells. J Histochem Cytochem 37:781–791, 1989.PubMedGoogle Scholar
  41. 41.
    Langley OK, Gratzl M. Neural cell adhesion molecule NCAM in neural and endocrine cells. In: Gratzl M, Langley K, eds. Markers for neural and endocrine cells. Molecular and cell biology, diagnostic applications, 1st ed. Weinheim: VCH-Verlagsgesellschaft, 1991. Pp 133–178.Google Scholar
  42. 42.
    Leube RE, Kaiser P, Sciter A, Zimbelmann R, Franke W, Rehm H, Knaus P, Prior H, Betz H, Reinke H, Beyreuther K, Wiedenmann B. Synaptophysin: Molecular organization and mRNA expression as determined from cloned cDNA. EMBO J 6:3261–3268, 1987.PubMedGoogle Scholar
  43. 43.
    Lloyd RV, Iacangelo AL, Eiden LE, Cano M, Jin L, Grimes M. Chromogranin A and B messenger ribonucleic acids in pituitary and other normal and neoplastic human endocrine tissues. Lab Invest 60:548–556, 1989.PubMedGoogle Scholar
  44. 44.
    Lloyd RV, Wilson BS, Kovacs K, Ryan N. Immunohistochemical localization of chromogranin in human hypophyses and pituitary adenomas. Arch Pathol Lab Med 109: 515–517, 1985.PubMedGoogle Scholar
  45. 45.
    Lowe AW, Madeddu L, Kelly RB. Endocrine secretory vesicles and neuronal synaptic vesicles have three integral membrane proteins in common. J Cell Biol 106:51, 1988.PubMedCrossRefGoogle Scholar
  46. 46.
    Marquèze-Pouey B, Wisden W, Malosio ML, Betz H. Differential expression of synaptophysin and synaptoporin mRNAs in the postnatal rat central nervous system. J Neurosci 11: 3388–3397, 1991.PubMedGoogle Scholar
  47. 47.
    Matthew WD, Tsavaler L, Reichardt LF. Identification of a synaptic vesicle-specific membrane protein with a wide distribution in neuronal and neurosecretory tissue. J Cell Biol 91:257–269, 1981.PubMedCrossRefGoogle Scholar
  48. 48.
    Mayerhofer A, Lahr G, Gratzl M. Expression of the neural cell adhesion molecule (NCAM) in endocrine cells of the ovary. Endocrinology 129:792–800, 1991.PubMedGoogle Scholar
  49. 49.
    Mayerhofer A, Scidl K, Lahr G, Bitter Suermann D, Christoph A, Bartheis D, Wille W, Gratzl M. Leydig cells express neural cell adhesion molecules (NCAMs) in vivo and in vitro. Biol Reprod 47:656–664, 1992PubMedCrossRefGoogle Scholar
  50. 50.
    Navone F, Jahn R, Di Gioia G, Stukenbrok H, Greengard P, De Camilli P. Protein p38: An integral membrane protein specific for small vesicles of neurons and neuroendocrine cells. J Cell Biol 103:2511–2527, 1986.PubMedCrossRefGoogle Scholar
  51. 51.
    Nybroe O, Linnemann D, Bock E. NCAM biosynthesis in brain. Neurochem Int 12: 251–262, 1988.CrossRefGoogle Scholar
  52. 52.
    Obendorf D, Schwarzenbrunner U, Fischer-Colbrie R, Laslop A, Winkler H. In adrenal medulla synaptophysin (protein p38) is present in chromaffin granules and in special vesicle population. J Neurochem 51:1573, 1988.PubMedCrossRefGoogle Scholar
  53. 53.
    Redecker P, Jörns A, Jahn R, Grube D. Synaptophysin immunoreactivity in the mammalian endocrine pancreas. Cell Tissue Res 264:461–467, 1991.PubMedCrossRefGoogle Scholar
  54. 54.
    Reetz A, Solimena M, Matteoli M, Folli F, Takei K, De Camilli P. GABA and pancreatic beta-cells: Colocalization of glutamic acid decarboxylase (GAD) and GABA with synap’ tic-like mikrovesicles suggest their role in GABA storage and secretion. EMBO J 10: 1275–1284, 1991.PubMedGoogle Scholar
  55. 55.
    Regan CM. Regulation of neural cell adhesion molecule sialylation state. Int J Biochem 23:513–523, 1991.PubMedCrossRefGoogle Scholar
  56. 56.
    Rutishauser U, Jessel TM. Cell adhesion molecules in vertebrate neural development. Physiol Rev 68:819–857, 1988.PubMedGoogle Scholar
  57. 57.
    Sakurai T, Seo H, Yamamoto N, Nagaya T, Nakane T, Kuwayama A, Kageyama N, Matsui N. Detection of mRNA of prolactin and ACTH in clinically nonfunctioning pituitary adenomas. J Neurosurg 69:653–659, 1988.PubMedGoogle Scholar
  58. 58.
    Schilling K, Gratzl M. Quantification of p38/synaptophysin in highly purified adrenal medullary chromaffin vesicles. FEBS Lett 233:22–24, 1988.PubMedCrossRefGoogle Scholar
  59. 59.
    Schmidle T, Weiler R, Desnos C, Scherman D, Fischer-Colbrie R, Floor E, Winkler H. Synaptin/synaptophysin p65 and SV2: Their presence in adrenal chromaffm granules and sympathetic large dense core vesicles. Biochim Biophys Acta 1060:251–256, 1991.PubMedCrossRefGoogle Scholar
  60. 60.
    Solimena M, De Camilli P. Autoimmunity to glutamic acid decarboxylase (GAD) in stiffman syndrome and insulin-dependent diabetes mellitus. Trends Neurosci 14:452–457, 1991.PubMedCrossRefGoogle Scholar
  61. 61.
    Somogyi P, Hodgson AJ, DePotter RW, Fischer-Colbrie R, Schober M, Winkler H, Chubb IW. Chromogranin immunoreactivity in the central nervous system. Immunochemical characterization, distribution and relationship to catecholamine and enkephalin pathways. Brain Res Rev 8:193–230, 1984.CrossRefGoogle Scholar
  62. 62.
    Stecher B, Ahnert-Hilger G, Weller U, Kemmer TP, Gratzl M. Amylase release from streptolysin O permeabilized pancreatic acinar cells. Effects of calcium, GTPyS, cAMP, tetanus toxin and botulinum A toxin. Biochem J 283:899–904, 1992.PubMedGoogle Scholar
  63. 63.
    Stefaneanu L, Ryan N, Kovacs K. Immunocytochemical localization of synaptophysin in human hypophyses and pituitary adenomas. Arch Pathol Lab Med 112:801–804, 1988.PubMedGoogle Scholar
  64. 64.
    Südhof TC, Jahn R. Proteins of synaptic vesicles involved in exocytosis and membrane recycling. Neuron 6:665–677, 1991.PubMedCrossRefGoogle Scholar
  65. 65.
    Takiyyuddin MA, Barbosa JA, Hsiao RJ, Parmer RJ, O’Connor DT. Diagnostic value of chromogranin A measured in the circulation. In: Gratzl M, Langley K, eds. Markers for neural and endocrine cells. Molecular and cell biology, diagnostic applications, 1st ed. Weinheim: VCH-Verlagsgesellschaft, 1991. Pp 191–201.Google Scholar
  66. 66.
    Takiyyuddin MA, Cervenka JH, Pandian MR, Stuenkel CA, Neumann HPH, O’Connor DT. Neuroendocrine sources of chromogranin-A in normal man: Clues from selective stimulation of endocrine glands. J Clin Endocrinol Metab 71:360–369, 1990.PubMedGoogle Scholar
  67. 67.
    Trimble WS, Gray TS, Elferink LA, Wilson MC, Scheller RH. Distinct patterns of expression of two VAMP genes within the rat brain. J Neurosci 10:1380–1387, 1990.PubMedGoogle Scholar
  68. 68.
    Watanabe T, Uchiyma Y, Grube D. Topology of chromogranin A and secretogranin II in the rat anterior pituitary: Potential marker proteins for distinct secretory pathways in gonadotrophs. Histochemistry 96:285–293, 1991.PubMedCrossRefGoogle Scholar
  69. 69.
    Wiedenmann B, Franke WW. Identification and localization of synaptophysin, an integral membrane glycoprotein of Mr 38,000 characteristic of presynaptic terminals. Cell 41: 1017–1028, 1985.PubMedCrossRefGoogle Scholar
  70. 70.
    Wiedenmann B, Franke WW, Kuhn C, Moll R, Gould VE. Synaptophysin: A marker for neuroendocrine cells and neoplasms. Proc Natl Acad Sci USA 83:3500–3504, 1986.PubMedCrossRefGoogle Scholar
  71. 71.
    Wiedenmann B, Huttner WB. Synaptophysin and chromogranins/ secretogranins—widespread constituents of distinct types of neuroendocrine vesicles and new tools in tumor diagnosis. Virchows Arch 58:95–121, 1989.Google Scholar
  72. 72.
    Wiedenmann B, Kuhn C, Schwechheimer K, Waldherr R, Raue F, Brandeis WE, Kommerell B, Franke WW. Synaptophysin identified in metastases of neuroendocrine tumors by immunocytochemistry and immunoblotting. Am J Clin Pathol 87:560–569, 1988.Google Scholar
  73. 73.
    Wilson CB. A decade of pituitary microsurgery: The Herbert Olivecrona lecture. J Neurosurg 61:814–833, 1984.PubMedCrossRefGoogle Scholar
  74. 74.
    Wu H-J, Rozansky DJ, Parmer RJ, Gill BM, O’Connor DT. Structure and function of the chromogranin A gene. J Biol Chem 266: 13130–13134, 1991.PubMedGoogle Scholar
  75. 75.
    Ziff EB. Transcription factors: A new family gathers at the cAMP response site. Trends Genet 6:69–72, 1990.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 1992

Authors and Affiliations

  • G. Lahr
    • 1
  • K. Langley
    • 2
  • C. Vereczkey
    • 3
  • O. Gratzl
    • 4
  • M. Gratzl
    • 1
  1. 1.Abteilung Anatomie und Zellbiologie der Universität UlmUlmGermany
  2. 2.IN-SERM U-338 de Biologie de la Communication CellulaireStrasbourgFrance
  3. 3.Department of AnatomyA. Szent-Györgyi Medical UniversitySzegedHungary
  4. 4.Neurochirurgische Universitätsklinik KantonsspitalBaselSwitzerland

Personalised recommendations