Direct microbial conversion

Prospects, progress, and obstacles
  • D. A. Hogsett
  • H. -J. Ahn
  • T. D. Bernardez
  • R. South
  • L. R. Lynd
Session 4 Bioengineering Research


Process development is reviewed for ethanol production from cellulosic biomass via direct microbial conversion (DMC). Experimental data addressing cellulase production and ethanol tolerance are also presented for the candidate DMC organismsClostridium thermocellum andClostridium thermosaccharolyticum. Two potential paths are identified for obtaining organisms for use in DMC. Path 1 involves modification of excellent ethanol producers, so that they also become good cellulase producers; Path 2 involves modification of excellent cellulase producers, so that they also become good ethanol producers. Cellulase production, ethanol tolerance, and ethanol selectivity are considered for both Path 1 and Path 2 organisms. It is concluded thatin situ cellulase production has the potential to allow cost reductions relative to state-of-the-art process designs on the order of 50¢/gal. Based on the data available, the value of cellulase production bythermocellum corresponds to 90% of this amount. However, each process path has a strategic obstacle to be overcome: high-level cellulase expression and secretion for Path 1, and high ethanol selectivity for Path 2. Ethanol tolerance is not seen as a primary factor in choosing between DMC and other ethanol process alternatives.

Index Entries

Direct microbial conversion ethanol tolerance cellulase production Clostridium thermocellum Clostridium thermosaccharolyticum 


  1. 1.
    Lynd, L. R., Cushman, J. H., Nichols, R.J., and Wyman, C.E. (1991),Science 251, 1318–1323.CrossRefGoogle Scholar
  2. 2.
    Hinman, N. D., Wright, J. D., Hoagland, W., and Wyman, C.E. (1989),Appl. Biochem. Biotechnol. 20/21, 391–401.Google Scholar
  3. 3.
    Veldhuis, M. K., Christensen, L. M., and Fulmer, E. I. (1933),Ind. Eng. Chem. 28, 430.CrossRefGoogle Scholar
  4. 4.
    Gong, G.-S., Maun, M., and Tsao, G. T. (1981),Biotechnol. Lett. 3(2), 77–82.CrossRefGoogle Scholar
  5. 5.
    Christakopoulos, P., Macris, B. J., and Ketos, D. (1989),Enz. and Microbial Technol. 11, 236–239.CrossRefGoogle Scholar
  6. 6.
    Avgerinos, G.C: and Wang, D. I. C. (1980),Ann. Rep. Verm. Processes 4, 165–191.Google Scholar
  7. 7.
    Murray, W. D., Wemyss, K.B. and Kahn, A. W. (1983),Eur. J. Appl. Microbiol. Biotechnol. 18, 71–74.CrossRefGoogle Scholar
  8. 8.
    Ng, T. K., Weimer, P. J., and Zeikus, J. G. (1977),Arch. Microbiol. 114, 1–7.CrossRefGoogle Scholar
  9. 9.
    Wang, D. I. C, Cooney, L., Wang, S.-D., Gordon, J. and Wang, G. Y. (1978),Proceedings Second Annual Symposium on Fuels from Biomass, Shuster, W. W. ed., Rensselaer Polytechnic Institute, Troy, NY, pp. 537–570.Google Scholar
  10. 10.
    Shoemaker, S., Schweickart, V., Ladner, M., Gelfand, D., Kwok, S., Myambo, K., and Innis, M. (1983),Bio/Technol. 1, 691–696.CrossRefGoogle Scholar
  11. 11.
    Skipper, N., Sutherland, M., Davies, R. W., Kilburn, D., Miller, R. C, Warren, A., and Wong, R. (1985),Science 230, 958–960.CrossRefGoogle Scholar
  12. 12.
    Rogers, P. (1986),Advances in Applied Microbiology, vol. 31, Laskin, A. I. ed., Academic, New York, pp. 1–59.Google Scholar
  13. 13.
    Lynd, L. R. (1989),Advances in Biochemical Engineering/Biotechnology, vol. 38, Fiechter, A. ed., Springer-Verlag, New York, pp. 1–52.Google Scholar
  14. 14.
    Slapack, G. E., Russell, I., and Stewart, G. G. (1987),Thermophilic Bacteria and Thermotolerant Yeasts for Ethanol Production, CRC, Boca Raton, FL.Google Scholar
  15. 15.
    Wang, D. I. C, Avgerinos, G. C, Biocic, I., Fang, S. D., and Fang, H. Y. (1983),Philos. Trans. R. Soc. London B300, 323–333.Google Scholar
  16. 16.
    Wiegel, J. and Ljundahl, L. G. (1986),CRC Crit. Rev. Biotechnol. 3(1), 39–108.Google Scholar
  17. 17.
    Bisaría, V. S. and Mishra, S. (1989),CRC Crit. Rev. Biotechnol. 9(2), 61–103.CrossRefGoogle Scholar
  18. 18.
    Lynd, L. R., Ahn, H.-J., Anderson, G., Hill, P., Kersey, D. S., and Klapatch, T. (1991),Appl. Biochem. Biotechnol. 28/29, 549–570.CrossRefGoogle Scholar
  19. 19.
    Ahn, H.-J. (1991), M.S. Thesis, Dartmouth College, Hanover, NH.Google Scholar
  20. 20.
    Johnson, E. A., Sakajoh, M., Halliwell, G., Madia, A., and Demain, A. L. (1982),Appl. Env. Microbiol. 43, 1125–1132.Google Scholar
  21. 21.
    Lynd, L. R., Grethlein, H.E., and Wolkin, R. W. (1989),Appl Env. Microbiol 55, 3131–3139.Google Scholar
  22. 22.
    Lynd, L. R. and Grethlein, H. E. (1987),Biotechnol. Bioeng. 29, 92–100.CrossRefGoogle Scholar
  23. 23.
    Wright, J. D. (1988),Energy Prog. 8(2), 71–78.Google Scholar
  24. 24.
    Wright, J. D. (1988),Chem. Eng. Prog. 84(8), 62–74.Google Scholar
  25. 25.
    Grethlein, H.E., Allen, D. C, and Converse, A. O. (1984),Biotechnol. Bioeng. 26, 1498–1505.CrossRefGoogle Scholar
  26. 26.
    Beguin, P. (1990),Annu. Rev. Microbiol. 44, 219–248.CrossRefGoogle Scholar
  27. 27.
    Penttila, M. E., Lehtovaara, P., Bailey, M., Teeri, T. T., and Knowles, J. (1988),Gene 63, 103–112.CrossRefGoogle Scholar
  28. 28.
    Zurbriggen, B.,Bailey, M. J., Penttila, M. E., Poutanen, and Linko, M., (1990),J. Biotechnol. 13, 267–278.CrossRefGoogle Scholar
  29. 29.
    Brestic-Goachet, N., Gunasekaran, P., Carni, B., and Baratti, J.-C. (1989),J. Gen. Microbiol. 135, 893–902.Google Scholar
  30. 30.
    Lejuene, A., Eveleigh, D. E., and Colson, C. (1988),FEMS Microbiol. Lett. 49, 363–366.CrossRefGoogle Scholar
  31. 31.
    Lamed, R. and Bayer, E. A. (1988),Adv. Appl. Microbiol. 33, 2–41.Google Scholar
  32. 32.
    Bernardez, T. D. (1990), Master of Engineering Thesis, Dartmouth College, Hanover, NH.Google Scholar
  33. 33.
    Stouthamer, A.H. (1979),Microbial Biochemistry, Vol. 21, Quayle, J. R. ed., University Park Press, Baltimore, pp. 1–47.Google Scholar
  34. 34.
    Ho, K. P. and Payne, W. J. (1979),Biotechnol. Bioeng. 21, 787–802.CrossRefGoogle Scholar
  35. 35.
    Thauer, R. K., Jungermann, K., and Decker, K. (1977),Bact. Rev. 41(1), 100.Google Scholar
  36. 36.
    Aiba, S., Shoda, M., and Nagatani, J. (1968),Biotechnol. Bioeng. 10, 845–864.CrossRefGoogle Scholar
  37. 37.
    Bazua, D. and Wilke, R. (1977),Biotechnol. Bioeng. Symp. 7, 105–118.Google Scholar
  38. 38.
    Ghose, T. K. and Tyagi, R. D. (1979),Biotechnol. Bioeng. 21, 1401–1420.CrossRefGoogle Scholar
  39. 39.
    Peringer, P., Blachere, H. Corrieu, G., and Lane, A. G. (1974),Biotechnol. Bioeng. 16, 431–454.CrossRefGoogle Scholar
  40. 40.
    Maiorella, B., Blanch, H. W., and Wilke, R. (1983),Biotechnol. Bioeng. 25, 103–121.CrossRefGoogle Scholar
  41. 41.
    Papoutsakis, E. T. (1984),Biotechnol. Bioeng. 26, 174–187.CrossRefGoogle Scholar
  42. 42.
    Erickson, L. E. (1980),Biotechnol. Bioeng. 22, 451–456.CrossRefGoogle Scholar
  43. 43.
    Holzberg, I., Finn, R. K., and Steinkraus, K. H. (1967),Biotechnol. Bioeng. 9, 413–427.CrossRefGoogle Scholar
  44. 44.
    Jobses, I. M. L. and Roels, J. A. (1986),Biotechnol. Bioeng. 28, 554–563.CrossRefGoogle Scholar
  45. 45.
    Herrero, A. A. and Gomez, R. F. (1980),Appl. Environ. Microbiol. 40(3), 571–577.Google Scholar
  46. 46.
    Lovitt, R. W., Longin, R., and Zeikus, J. G. (1984),Appl. Environ. Microbiol. 48(1), 171–177.Google Scholar
  47. 47.
    Fieschko, J. and Humphrey, A. E. (1983),Biotechnol. Bioeng. 25, 1655–1660.CrossRefGoogle Scholar
  48. 48.
    Huang, S.-Y., and Chen, J.-C. (1988),Enz. Microb. Technol. 20, 431–439.CrossRefGoogle Scholar
  49. 49.
    Sa-Correia, I. and Van Uden, N. (1983),Biotechnol. Bioeng. 25, 1665–1667.CrossRefGoogle Scholar
  50. 50.
    Van Uden, N. (1984),Adv. Microb. Physiol. 25, 195–251.Google Scholar
  51. 51.
    Van Uden, N. (1985),Annual Reports on Fermentation Processes 8, 11.Google Scholar
  52. 52.
    Nipkow, A., Sonnleitner, and Fiechter, A. (1986),J. Biotechnol. 4, 35–47.CrossRefGoogle Scholar
  53. 53.
    Rogers, P. L., Lee, K. J., Skotnicki, M. L., and Tribe, D. E. (1982),Advances in Biochemical Engineering, vol. 23, Fiechter, A., ed., Springer-Verlag, New York, pp. 37–84.Google Scholar
  54. 54.
    Avgerinos, G. C. and Wang, D. I. (1983),Biotechnol. Bioeng. 25, 67–83.CrossRefGoogle Scholar
  55. 55.
    Carreira, L. H., Weigel, J., and Ljungdahl, L. G. (1983),Biotechnol. Bioeng. Symp. 13, 183–191.Google Scholar
  56. 56.
    Wang, D. I. and Dalal, R. (1986), Patent no. 4,568,644.Google Scholar
  57. 57.
    Zeikus, J. G., Ben-Bassat, A., and Hegge, P. J. (1980),J. Bacteriol. 243, 432–444.Google Scholar
  58. 58.
    Hon-Nami, K., Coughlan, M. P., Hon-Nami, H., Carriera, L. H., and Ljungdahl, L. G. (1985),Biotechnol. Bioeng. Symp. 15, 191–205.Google Scholar
  59. 59.
    Lacis, L. S. and Lawford, H. G. (1988),Arch. Microbiol. 150, 48–55.CrossRefGoogle Scholar
  60. 60.
    Lacis, L. S. and Lawford, H. G. (1989),Biotechnol. Lett. 10(8), 603–608.Google Scholar
  61. 61.
    Mistry, F. and Cooney, L. (1989),Biotechnol. Bioeng. 34, 1295–1304.CrossRefGoogle Scholar
  62. 62.
    Slaff, G. F. and Humphrey, A. E. (1981),Presentation at the 182nd Meeting of the ACS. Google Scholar
  63. 63.
    Ward, P. J. and Mutharasan, R. (1986),Presentation at the 192nd Meeting of the ACS. Google Scholar
  64. 64.
    Lynd, L. R. (1990),Appl. Biochem. Microbiol. 24/25, 695–719.Google Scholar

Copyright information

© Humana Press Inc. 1992

Authors and Affiliations

  • D. A. Hogsett
    • 1
  • H. -J. Ahn
    • 1
  • T. D. Bernardez
    • 1
  • R. South
    • 1
  • L. R. Lynd
    • 1
    • 2
  1. 1.Thayer School of EngineeringDartmouth CollegeHanover
  2. 2.Department of BiologyDartmouth CollegeHanover

Personalised recommendations