Applied Biochemistry and Biotechnology

, Volume 34, Issue 1, pp 149–159 | Cite as

Enhancement of 1,3-Propanediol production by cofermentation inEscherichia coli expressingKlebsiella pneumoniae dha regulon genes

  • I-Teh Tong
  • Douglas C. Cameron
Session 2 Applied Biological Research


1,3-Propanediol (1,3-PD) is an intermediate in chemical and polymer synthesis. We have previously expressed the genes of a biochemical pathway responsible for 1,3-PD production, thedha regulon ofKlebsiella pneumoniae, inEscherichia coli. An analysis of the maximum theoretical yield of 1,3-PD from glycerol indicates that the yield can be improved by the cofermentation of sugars, provided that kinetic constraints are overcome. The yield of 1,3-PD from glycerol was improved from 0.46 mol/mol with glycerol alone to 0.63 mol/mol with glucose cofermentation and 0.55 mol/mol with xylose cofermentation. The engineeredE. coli also provides a model system for the study of metabolic pathway engineering.

Index Entries

1,3-Propanediol Escherichia coli cofermentation dha regulon metabolic pathway engineering 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rojahn, C. A. (1921),Ber. Dtsch. Chem. Ges. B 54, 3115.Chemical Abstract 16, 1741.Google Scholar
  2. 2.
    Werkman, C. H. and Gillen, G. F. (1932),J. Bacteriol. 23, 167.Google Scholar
  3. 3.
    Mickelson, M. N. and Werkman, C. H. (1940),J. Bacteriol. 39, 252.Google Scholar
  4. 4.
    Lin, E. C. C. (1976),Ann. Rev. Microbiol. 30, 535.CrossRefGoogle Scholar
  5. 5.
    Stroinski, A., Pawelkiewicz, J., and Johnson, B. C. (1974),Arch. Biochem. Biophys. 162, 321.CrossRefGoogle Scholar
  6. 6.
    Johnson, E. A. and Lin, E. C. C. (1987),J. Bacteriol. 169, 2050.Google Scholar
  7. 7.
    Forage, R. G. and Forster, M. A. (1982),J. Bacteriol. 149, 413.Google Scholar
  8. 8.
    Johnson, E. A., Levine, R. L., and Lin, E. C. C. (1985),J. Bacteriol. 164, 479.Google Scholar
  9. 9.
    Johnson, E. A., Burke, S. K., Forage, R. G., and Lin, E. C. C. (1984),J. Bacteriol. 160, 55.Google Scholar
  10. 10.
    Forage, R. G. and Lin, E. C. C. (1982),J. Bacteriol. 151, 591.Google Scholar
  11. 11.
    Tong, I.-T., Liao, H. H., and Cameron, D. C. (1991),Appl. Environ. Microbiol. (in press).Google Scholar
  12. 12.
    Daniels, L. and Zeikus, J. G. (1975),Appl. Bacteriol. 90, 1325.Google Scholar
  13. 13.
    Tempest, D. W., and Neijssel, O. M. (1987),Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, vol. 1, Neidhardt, F. C., Ingraham, J. L., Low, K. B., Magasanik, B., Schaechter, M., and Umbarger, H. E. eds., American Society for Microbiology, Washington, D.C., pp. 797–808.Google Scholar
  14. 14.
    Schutz, H., and Radler, F. (1984),System. Appl. Microbiol. 5, 169.Google Scholar
  15. 15.
    Zwaig, N., Kistler, W. S., and Lin, E. C. C. (1970),J. Bacteriol. 102, 753.Google Scholar
  16. 16.
    Srivastava, D. K. and Bernhard, S. A. (1986),Science 234, 1081.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 1992

Authors and Affiliations

  • I-Teh Tong
    • 1
  • Douglas C. Cameron
    • 1
  1. 1.Department of Chemical EngineeringUniversity of WisconsinMadison

Personalised recommendations