Applied Biochemistry and Biotechnology

, Volume 34, Issue 1, pp 23–35 | Cite as

Effects of cell-wall acetate, xylan backbone, and lignin on enzymatic hydrolysis of aspen wood

  • Fanran Kong
  • Cady R. Engler
  • Ed J. Soltes
Session 1 Thermal, Chemical, and Biological processing

Abstract

Aspen wood substrates with varying degrees of deacetylation, xylan, and lignin removal have been prepared and submitted to enzymatic hydrolysis with a cellulase/hemicellulase preparation for an extended constant period of hydrolysis. Controlled deacetylation has been achieved by treating wood with various alkali metal hydroxide solutions, at various alkali/wood ratios. It has been found that samples with the same extent of deacetylation produce the same sugar yields upon enzymatic hydrolysis. Increased degree of deacetylation increases the yield of sugars obtained from enzymatic hydrolysis, all other compositional parameters held constant. The acetyl group removal is proportional to the stoichiometric relation between added base and wood acetyl content, i.e., the same number of milliequivalents of base/weight of wood remove the same extent of acetyl groups, regardless of the concentration of the base solution. No cation effects are found among Li, Na, and K alkali hydroxide solutions, suggesting that swelling is not as important a parameter as is the removal of the acetyl groups from the xylan backbone in determining the extent of hydrolyzability of the resulting sample.

Index Entries

Aspen enzymatic hydrolysis xylan acetate lignin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Soltes, E. J. (1983),Biomass Utilization, Cote, W. A., ed., Plenum, New York, pp. 271–298.Google Scholar
  2. 2.
    Sjostrom, E. (1985),Wood Chemistry: Fundamentals and Applications, Academic Press, NY.Google Scholar
  3. 3.
    Browning, B. L. (1963),The Chemistry of Wood, Interscience Publishers, New York.Google Scholar
  4. 4.
    Goldstein, I. S. (1983),Wood and Agricultural Residues: Research on Use for Feed, Fuel, and Chemicals, Soltes, E. J., ed., Academic, New York, pp. 315–328.Google Scholar
  5. 5.
    Kennedy, J. F. and Paterson, M. (1989),Cellulose Utilization, Innagaki, H. and Phillips, G. O., eds., Elsevier Applied Science, London, pp. 203–212.Google Scholar
  6. 6.
    Gharpuray, M. M., Fan, L. T., and Lee, Y. H. (1983),Wood and Agricultural Residues: Research on Use for Feed, Fuel, and Chemicals, Soltes, E. J., ed., Academic, New York, pp. 369–389.Google Scholar
  7. 7.
    Jeffries, T. W. (1987),Wood and Cellulosics, Kennedy, J. F., Phillips, G. O., and Williams, P. A., eds., Ellis Horwood, Chichester, pp. 213–242.Google Scholar
  8. 8.
    Schwald, W., Brownell, H. H., and Saddler, J. N. (1988),Wood Chem. Technol. 8, 543.CrossRefGoogle Scholar
  9. 9.
    Grohmann, K., Torget, R. and Hemmel, M. (1985),Biotechnol. Bioeng. Symp. 15, 59–80.Google Scholar
  10. 10.
    Gould, J. M. (1984),Biotechnol. Bioeng. 26, 46.CrossRefGoogle Scholar
  11. 11.
    Gould, J. M. (1984),Biotechnol. Bioeng. 27, 225–231.CrossRefGoogle Scholar
  12. 12.
    Kerley, M. S., Fahey, G. C., Berger, L. L., Gould, J. M., and Baker, F. L. (1985),Science 230, 820.CrossRefGoogle Scholar
  13. 13.
    Helmling, O., Arnold, G., Rzehak, H., Fahey, G. C., Berger, L. L., and Merchen, N. R. (1989),Biotechnol. Bioeng. 33, 237.CrossRefGoogle Scholar
  14. 14.
    Fan, L. T., Lee, Y. H., and Gharpuray, M. M. (1982),Adv. Biochem. Eng. 23, 157.Google Scholar
  15. 15.
    Grohmann, K., Mitchell, D. J., Himmel, M. E., Dale, B. E., and Schroeder, H. A. (1989),Appl. Biochem. Biotech. 20, 45–61.CrossRefGoogle Scholar
  16. 16.
    Timell, T. E. (1967),Wood Science Technol. 1, 45.CrossRefGoogle Scholar
  17. 17.
    Sinner, M., Parameswaran, H., and Dietrichs, H. H. (1979),Adv. Chem. Ser. 181, 303–329.CrossRefGoogle Scholar
  18. 18.
    Browning, B. L. (1967),Methods of Wood Chemistry, Interscience, New York.Google Scholar
  19. 19.
    Soltes, E. J. (1989),Mechanisms of Plant Cell Wall Resistance to Attack by Polysaccharide Degrading Enzymes, Final Report, SERI subcontract XK-7-07031-9.Google Scholar
  20. 20.
    Kong, F. (1990),Effect of Acetate and Other Cell Wall Components on Enzymatic Hydrolysis of Aspen Wood. M.S. Thesis, Forest Science, Texas A&M University, College Station, TX.Google Scholar
  21. 21.
    Baker, A. J., Millet, M. A., and Setter, L. D. (1975),Cellulose Technology Research, A. F. Turbak, ed. (American Chemical Society, Washignton, D.C.), pp. 75–105.Google Scholar
  22. 22.
    Rydholm, S. A. (1965),Pulping Processes, Interscience, New York, p. 95.Google Scholar
  23. 23.
    Soltes, E. J. (1980),Wood Chemistry Laboratory Manual, Department of Forest Science, Texas A&M University, College Station, TX.Google Scholar
  24. 24.
    Miller, G. L. (1959),Anal. Chem. 31, 427.Google Scholar
  25. 25.
    Chang, L., Chang, T., and Li, L. (1988),Methods of Biochemistry, Higher Education, Beijing, p. 9.Google Scholar
  26. 26.
    Yu, Q. (1985),Methods of Plant Physiology and Biochemistry, Higher Education, Beijing, p. 6.Google Scholar
  27. 27.
    Stamm, A. J. (1964),Wood and Cellulose Science, Ronald Press, New York, pp. 249–250.Google Scholar
  28. 28.
    Weast, R. C., Astle, M. J., and Beyer, W. H. (1985), eds.,CRC Handbook of Chemistry and Physics, CRC Press, Boca Raton, FL, p. F-164.Google Scholar
  29. 29.
    Rowell, R. M. (1984),The Chemistry of Solid Wood, Rowell, R. M., ed., American Chemical Society, Washington D.C., pp. 175–210.Google Scholar

Copyright information

© Humana Press Inc. 1992

Authors and Affiliations

  • Fanran Kong
    • 1
  • Cady R. Engler
    • 2
  • Ed J. Soltes
    • 1
  1. 1.Department of Forest ScienceTexas A&M University SystemCollege Station
  2. 2.Department of Agricultural Engineering, Texas Agricultural Experiment StationTexas A&M University SystemCollege Station

Personalised recommendations