Applied Biochemistry and Biotechnology

, Volume 63, Issue 1, pp 315–325 | Cite as

Polysaccharide hydrolase folds diversity of structure and convergence of function

  • Michael E. Himmel
  • P. Andrew Karplus
  • Joshua Sakon
  • Willam S. Adney
  • John O. Baker
  • Steven R. Thomas
Session 2 Biological Research

Abstract

Polysaccharide glycosyl hydrolases are a group of enzymes that hydrolyze the glycosidic bond between carbohydrates or between a carbohydrate and a noncarbohydrate moiety. Here we illustrate that traditional schemes for grouping enzymes, such as by substrate specificity or by organism of origin, are not appropriate when thinking of structure-function relationships and protein engineering. Instead, sequence comparisons and structural studies reveal that enzymes with diverse specificities and from diverse organisms can be placed into groups among which mechanisms are largely conserved and insights are likely to be transferrable. In particular, we illustrate how enzymes have been grouped using protein sequence alignment algorithms and hydrophobic cluster analysis. Unfortunately for those who seek to improve cellulase function by design, cellulases are distributed throughout glycosyl hydrolase Families 1,5,6,7,9, and 45. These cellulase families include members from widely different fold types, i.e., the TIM-barrel, βαβ-barrel variant (a TIM-barrel-like structure that is imperfectly superimposable on the TIM-barrel template), β-sandwich, and α-helix circular array. This diversity in cellulase fold structure must be taken into account when considering the transfer and application of design strategies between various cellulases.

Index Entries

Cellulases xylanases amylases glycosyl hydrolases structural folds X-ray structures hydrophobic cluster families 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Orengo, C. A., Jones, D. T., and Thornton, J. M. (1994),Nature 372, 631–634.CrossRefGoogle Scholar
  2. 2.
    Henrissat, B. (1991),Biochem. J. 280, 309–316.Google Scholar
  3. 3.
    Gilkes, N. R., Henrissat, B., Kilburn, D. G., Miller, R. C., Jr., and Warren, R. A. J. (1991),Microbiol. Rev. 55, 303–312.Google Scholar
  4. 4.
    Henrissat, B. and Bairoch, A. (1993),Biochem. J. 293, 781–788.Google Scholar
  5. 5.
    Henrissat, B., Callebaut, I., Fabrega, S., Lehn, P., Mornon, J.-P., and Davies, G. (1995),Proc. Natl. Acad. Sci. 92, 7090–7094.CrossRefGoogle Scholar
  6. 6.
    Bairoch, A. (1996), SWISS-PROT Protein Sequence Data Bank (http://expasy.hcuge.ch/ cgibin/lists?glycosid.text).Google Scholar
  7. 7.
    Levitt, M. and Chothia, C. (1976),Nature 261, 552–557.CrossRefGoogle Scholar
  8. 8.
    Efimov, A. V. (1994),Structure 2, 999–1002.CrossRefGoogle Scholar
  9. 9.
    Harris, N. L., Presnell, S. R., and Cohen, F. E. (1994),J. Mol. Biol. 236, 1356–1368.CrossRefGoogle Scholar
  10. 10.
    Chothia, C. and Janin, J. (1981),Proc. Natl. Acad. Sci. USA 78, 4146–4150.CrossRefGoogle Scholar
  11. 11.
    Orengo, C. A. and Thornton, J. M. (1993),Structure 1, 105–120.CrossRefGoogle Scholar
  12. 12.
    Sakon, J., Adney, W. S., Himmel, M. E., Thomas, S. R., and Karplus, P. A. (1996),Biochemistry 35, 10648–10660.CrossRefGoogle Scholar
  13. 13.
    Kraulis, P. J., Clore, G. M., Nilges, M., Jones, T. A., Pettersson, G., Knowles, J., and Gronenborn, A. M. (1989),Biochemistry 28, 7241.CrossRefGoogle Scholar
  14. 14.
    Xu, G.-Y., Ong, E., Gilkes, N. R., Kilburn, D. G., Muhandiram, D. R., Harris-Brandts, M., Carver, J. P., Kay, L. E., and Harvey, T. S. (1995), PDB entry 1exg.Google Scholar
  15. 15.
    Murzin, A. G., Brenner, S. E., Hubbard, T., and Chothia, C. (1995),J. Mol. Biol. 247, 536–540.Google Scholar
  16. 16.
    Tolley, S. P., Barrett, T. E., Suresh, C. G., and Huges, M. A. (1993),J. Mol. Biol. 229, 791.CrossRefGoogle Scholar
  17. 17.
    Dominguez, R., Souchon, H., Spinelli, S., Dauter, Z., Wilson, K. S., Chauvaux, S., Béguin, P., and Alzari, P. M. (1995),Nat. Struct. Biol. 2, 569.CrossRefGoogle Scholar
  18. 18.
    Rouvinen, T., Rouvinen, J., Lehtovaara, P., Caldentey, X., Tomme, P., Claeyssens, M., Pettersson, G., and Teeri, T. (1989),J. Mol. Biol. 209, 167.CrossRefGoogle Scholar
  19. 19.
    Spezio, M., Wilson, D. B., and Karplus, P. A. (1993),Biochemistry 32, 9906.CrossRefGoogle Scholar
  20. 20.
    Divne, C., Stahlberg, J., Reinikainen, T., Ruohonen, L., Pettersson, G., Knowles, J. K. C., Teeri, T. T., and Jones, T. A. (1994),Science 265, 524.CrossRefGoogle Scholar
  21. 21.
    Alzari, P. M., Juy, M., and Souchon, H. (1993),Biotechnol. Industrial Fermentation 8, 73.Google Scholar
  22. 22.
    Davies, G. J., Dodson, G. G., Hubbard, R. E., Tolley, S. P., Dauter, Z., Wilson, K. S., Hjort, C., Mikkelsen, J. M., Rasmussen, G., and Schulein, M. (1993),Nature 365, 362.CrossRefGoogle Scholar
  23. 23.
    Derewenda, U., Swenson, R., Green, R., Wei, Y., Morosoli, R., Shareck, F., Kluepfel, D., and Derewenda, Z. S. (1994),J. Biol. Chem. 269, 20,811.Google Scholar
  24. 24.
    Dominguez, R., Souchon, H., Spinelli, S., Dauter, Z., Wilson, K. S., Chauvaux, S., Beguin, P., and Alzari, P. M. (1995),Nat. Struct. Biol. 2, 569.CrossRefGoogle Scholar
  25. 25.
    Harris, G. W., Jenkins, J. A., Connerton, I., Cummings, N., Lo Leggio, L., Scott, M., Hazlewood, G. P., Laurie, J. I., Gilbert, H. J., and Pickersgill, R. W. (1994),Structure (bond.) 2, 1107.CrossRefGoogle Scholar
  26. 26.
    White, A., Withers, S. G., Gilkes, N. R., and Rose, D. R. (1994),Biochemistry 33, 12,546.Google Scholar
  27. 27.
    Torronen, A. and Rouvinen, J. (1995),Biochemistry 34, 847.CrossRefGoogle Scholar
  28. 28.
    Campbell, R. L., Rose, D. R., Wakarchuk, W. W., To, R. J., Sung, W., and Yaguchi, M. (1994), PDB entry 1xnd.Google Scholar
  29. 29.
    Wakarchuk, W. W., Campbell, R. L., Sung, W. L., Davoodi, J., and Yaguchi, M. (1994),Protein Sci. 3, 467.CrossRefGoogle Scholar
  30. 30.
    Matsuura, Y., Kusunoki, M., Harada, W., and Kakudo, M. (1984),J. Biochem. (Tokyo) 95, 697.Google Scholar
  31. 31.
    Klein, C. and Schulz, G. E. (1991),J. Mol. Biol. 217, 737.CrossRefGoogle Scholar
  32. 32.
    Kubota, M., Matsuura, Y., Sakai, S., and Katsube, Y. (1995), PDB entry 1cyg.Google Scholar
  33. 33.
    Qian, M., Haser, R., Buisson, G., Duee, E., and Payan, F. (1993),J. Mol. Biol. 231, 785.CrossRefGoogle Scholar
  34. 34.
    Boel, E., Brady, L., Brzozowski, A. M., Derewenda, Z., Dodson, G. G., Jensen, V. J., Petersen, S. B., Swift, H., Thim, L., and Woldike, H. F. (1990),Biochemistry 29, 6244.CrossRefGoogle Scholar
  35. 35.
    Morishita, Y., Matsuura, Y., Kubota, M., Sato, M., Sakai, S., and Katsube, Y. (1995), PDB entry 1amg.Google Scholar
  36. 36.
    Kadziola, A., Abe, J.-I., Svensson, B., and Haser, R. (1994),J. Mol. Biol. 239, 104.CrossRefGoogle Scholar
  37. 37.
    Mikami, B., Degano, M., Hehre, E. J., and Sacchettini, J. C. (1994),Biochemistry 33, 7779.CrossRefGoogle Scholar
  38. 38.
    Aleshin, A. E., Hoffman, C., Firsov, L. M., and Honzatko, R. B. (1994),J. Mol. Biol. 238, 575.CrossRefGoogle Scholar
  39. 39.
    Davies, G. and Henrissat, B. (1995),Structure 3, 853–859.CrossRefGoogle Scholar
  40. 40.
    Himmel, M. E., Adney, W. S., Grohmann, K., and Tucker, M. P. (1994), US Patent No. 5,275,944.Google Scholar
  41. 41.
    Wang, Q., Tull, D., Meinke, A., Gilkes, N. R., Warren, R. A. J., Aebersold, R., and Withers, S. G. (1993),J. Biol. Chem. 268, 14,096–14,102.Google Scholar
  42. 42.
    Bortoli-German, I., Haiech, J., Chippaux, M., and Barras, F. (1995),J. Mol. Biol. 246, 82–94.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 1997

Authors and Affiliations

  • Michael E. Himmel
    • 1
  • P. Andrew Karplus
    • 2
  • Joshua Sakon
    • 2
  • Willam S. Adney
    • 1
  • John O. Baker
    • 1
  • Steven R. Thomas
    • 1
  1. 1.Biotechnology Center for Renewable Fuels and ChemicalsNational Renewable Energy LaboratoryGolden
  2. 2.Section of BiochemistryMolecular and Cell Biology Cornell UniversityIthaca

Personalised recommendations