Adsorption of cellulases on steam-pretreated willow

  • Mats Galbe
  • Robert Eklund
  • Guido Zacchi
Session 1 Thermal and Chemical Processing

Abstract

The adsorption of cellulases on steam-pretreated willow has been measured for2, 4, and 8 wt% willow and with varying enzyme concentrations (2–100 wt% based on substrate). The enzyme concentration was measured as soluble protein, filter paper activity (FPA), CMC-ase activity, and activity toward willow. The adsorption data were modeled with a Langmuir isotherm. The maximum adsorption capability depends on the method for measurement of the enzyme concentration. The lowest value, 470 mg enzyme/g willow, was obtained for the soluble protein and the highest value, 650 mg/g, for the FPA. For technical applications, a single isotherm can be used for calculation of the adsorption capability of steam-treated willow.

Index Entries

adsorption cellulases willow enzyme recovery 

Abbreviations Used

Eads

adsorbed enzyme (g/L)

eads

Ea/So(g enzyme adsorbed/kg ODM)

eads,max

maximum adsorbed enzyme (g enzyme/kg ODM)

Eo

initial enzyme concentration (g/L)

Esup

enzyme concentration in supernatant (g/L)

K

adsorption equilibrium constant (g/L)

teSo

substrate concentration (kg/L)

References

  1. 1.
    Zacchi, G., Skoog, K., and Hahn-Hägerdal, B. (1988),Biotech. Bioeng. 32, 460.CrossRefGoogle Scholar
  2. 2.
    Ohlson, F., Trägard, G., and Hahn-Hägerdal, B. (1984),Biotech. Bioeng. 26, 647.CrossRefGoogle Scholar
  3. 3.
    Woodward, J. and Zachry, G. S. (1982),Enzyme Microb. Technol. 4, 245.CrossRefGoogle Scholar
  4. 4.
    Tjerneld, F., Persson, I., Albertsson, P.-A., and Hahn-Hägerdal, B. (1985),Biotech. Bioeng. Symp. 15, 419.Google Scholar
  5. 5.
    Orichowsky, S. T., Wilke, C. R., and Blanch, H. R. (1982),Report No. 15153, Lawrence Berkeley Laboratory.Google Scholar
  6. 6.
    Reese, E T. (1982),Process Biochem.. 17, 2.Google Scholar
  7. 7.
    Galbe, M. and Zacchi, G. (1986),Biotech. Bioeng. Symp. 17, 97.Google Scholar
  8. 8.
    Hägerdal, B., Ferchak, J. D., and Pye, E. K. (1978),Appl. Environ. Microb. 36, 606.Google Scholar
  9. 9.
    Mandels, M., Andreotti, R., and Roche, C. (1976),Biotech. Bioeng. Symp. 6, 21.Google Scholar
  10. 10.
    Hägerdal, B., Harris, H., and Pye, E. K. (1979),Biotech. Bioeng. 21, 345.CrossRefGoogle Scholar
  11. 11.
    Miller, G. L. (1959),Anal. Chem. 31, 426.CrossRefGoogle Scholar
  12. 12.
    Ghose, T. K. (1987),Pure Appl. Chem. 59, 257.CrossRefGoogle Scholar
  13. 13.
    Bradford, M. M. (1976),Anal. Biochem. 72, 248.CrossRefGoogle Scholar
  14. 14.
    Lee, Y.-H. and Fan, L. T. (1982),Biotech. Bioeng. 24, 2382.Google Scholar
  15. 15.
    Tanaka, M., Ikesaka, M., Matsuno, R., and Converse, A. O. (1988),Biotech. Bioeng. 32, 698.CrossRefGoogle Scholar
  16. 16.
    Goel, S. C. and Ramachandran, K. B. (1983),J. Ferment. Technol. 61, 281.Google Scholar
  17. 17.
    Peitersen, N. Medeiros, J., and Mandels, M. (1977),Biotech. Bioeng. 19, 1091.CrossRefGoogle Scholar
  18. 18.
    Stuart, J. Y. and Ristroph, D. L. (1985),Biotech. Bioeng. 27, 1056.CrossRefGoogle Scholar
  19. 19.
    Kumakura, M. (1986),J. Mat. Sci. Lett 5, 78.CrossRefGoogle Scholar
  20. 20.
    Steiner, W., Sattler, W., and Esterbauer, H. (1988),Biotech. Bioeng. 32, 853.CrossRefGoogle Scholar
  21. 21.
    Tatsumoto, K., Baker, J. O., Tucker, M. P., Oh, K. K., Mohagheghi, A., Grohmann, K., and Himmel, M. E. (1988),Appl. Biochem. Biotech. 18, 159.CrossRefGoogle Scholar
  22. 22.
    Kyriacou, A., Neufeld, R. J., and Mackenzie, C. R. (1989),Biotech. Bioeng. 33, 63.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 1990

Authors and Affiliations

  • Mats Galbe
    • 1
  • Robert Eklund
    • 1
  • Guido Zacchi
    • 1
  1. 1.Chemical Engineering IUniversity of LundLundSweden

Personalised recommendations