Applied Biochemistry and Biotechnology

, Volume 70, Issue 1, pp 765–777 | Cite as

Biocatalytic removal of nickel and vanadium from petroporphyrins and asphaltenes

  • L. Mogolloń
  • R. Rodríguez
  • W. Larrota
  • C. Ortiz
  • R. Torres
Session 3: Bioprocessing Research


Asphaltenes from a crude oil rich in heavy metals (Castilla crude oil) were fractionated and partially characterized. Biocatalytic modifications of these fractionated asphaltenes by three different hemoproteins: chloro-peroxidase (CPO), cytochrome C peroxidase (Cit-C), and lignin peroxi-dase (LPO) were evaluated in both aqueous buffer and organic solvents. The reactions were carried out in aqueous buffers, ternary systems of toluene: isopropanol: water, and aqueous-miscible organic solvent solutions with petroporphyrins as substrate. The petroporphyrins were more soluble in the ternary systems and aqueous miscible-organic solvent systems than in the aqueous buffer systems. However, only the CPO-mediated reactions were effective in eliminating the Soret peak in both aqueous and organic solvent systems. The effects of CPO-mediated reactions on the release of the metals complexed with the porphyrins and asphaltenes were also determined. Chloroperoxidase was able to alter components in the heavy fractions of petroleum and remove 53 and 27% of total heavy metals (Ni and V, respectively) from petroporphyrin-rich fractions and asphaltenes

Index Entries

Asphaltenes chloroperoxidase biocatalytic modification organic solvents demetallation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Strauz, O. P., Mojelsky, T. W., and Lown, E. M. (1992),Fuel 71, 1355–1363.CrossRefGoogle Scholar
  2. 2.
    Waldo, G. S., Carlson, R. M. K., Moldowan, J. M., Peters, K. E., and Penner-Hahn, J. E. (1991),Geochim. Cosmochim. Ada,55, 801–814.CrossRefGoogle Scholar
  3. 3.
    Fish, R. H., Komlenic, J. J., and Wines, B. K. (1984),Anal. Chem. 56, 2452–2460.CrossRefGoogle Scholar
  4. 4.
    Ignasiak, T. M., Kotlyar, L., Samman, N., Montgomery, D. S., and Strausz, O. P. (1983),Fuel 62, 363–369.CrossRefGoogle Scholar
  5. 5.
    Semple, K. M., Cyr, N., Fedorak, P. M., and Westlake, D. W. S. (1990),Can. J. Chem. 68, 1092–1099.CrossRefGoogle Scholar
  6. 6.
    Fedorak, P., Semple, Vasquez-Duhalt, R., and Westlake, D. (1993),Enzyme Microb. Technol. 15, 429–437.CrossRefGoogle Scholar
  7. 7.
    Cerniglia, C. E. (1992),Biodegradation 3, 351–368.CrossRefGoogle Scholar
  8. 8.
    Finnerry, W. R., Schokley, K., and Attaway, H. (1983), inMicrobial Enhanced Oil Recovery, Zajuic, J. E. et al., eds., American Chemical Society, Washington, DC, pp. 2–39.Google Scholar
  9. 9.
    Rontani, J. F., Bosser-Joulak, P. M., Rambeloarisos, E., Bertrand, J. C., and Giusti, G. (1985),Chemosphere,14, 1413–1422.CrossRefGoogle Scholar
  10. 10.
    Farrel, R. L., Murtagh, K. E., Tien, M., Mozuch, M. D., and Kirk (1989),Enzyme Microb. Technol. 11, 322–328.CrossRefGoogle Scholar
  11. 11.
    Morris, D. P. and Hager, L. P. (1966),J. Biol. Chem. 241, 1763–1768.Google Scholar
  12. 12.
    Blauer, G., Sreetama, N., and Woody, R. W. (1993),Biochemistry 32, 6674–6679.CrossRefGoogle Scholar
  13. 13.
    Yen, T. F. (1975), inThe Role of Trace Metals in Petroleum, Yen, T. F., ed., Ann Arbor Science Publishers, Ann Arbor, MI, pp. 1–30.Google Scholar
  14. 14.
    Valkovic, V. (1978),Trace Metals in Petroleum, Petroleum Publishing, Tulsa, OK.Google Scholar
  15. 15.
    Filby, R. H. and van Berkel, G. J. (1987), inMetals Complexes in Fossil Fuels, Filby, R. H. and Branthaver, J. F., eds., American Chemical Society, Washington, DC, pp. 2–39.Google Scholar
  16. 16.
    Baker, E. W. (1969) inOrganic Geochemistry, Eglinton, G. and Murphy, M. T. J., eds., Springer-Verlag, Berlin, pp. 464–497.Google Scholar
  17. 17.
    Vazquez-Duhalt, R., Semple, K. M., Westlake, D. W. S., and Fedorak, P. M. (1993),Enzyme Microbiol. Technol. 15, 494–499.CrossRefGoogle Scholar
  18. 18.
    Vazquez-Duhalt, R. Westlake, D. W. S., and Fedorak, P. M. (1994),Appl. Environ. Microbiol,60, 459–466.Google Scholar
  19. 19.
    Klyachko, N. L. and Klibanov, A. M. (1992),Appl. Biochem. Biotechnol. 37, 53–68.CrossRefGoogle Scholar
  20. 20.
    Vulfson, E. N., Ahmed, G., Gill, Y., Kozlov, I. A., Goodenough, P. W., and Law, B. A. (1991),Biotechnol. Lett. 13, 91–96.CrossRefGoogle Scholar
  21. 21.
    Khmelnitsky, Y. L., Levanshov, A. V., Klyachko, N. L., and Martinek, K. (1988),Enzyme Microbiol. Technol. 10, 710–724.CrossRefGoogle Scholar
  22. 22.
    Dordick, J. S. (1989),Enzyme Microbiol. Technol. 11, 194–211.CrossRefGoogle Scholar
  23. 23.
    Doerge, D. (1986),Arch. Biochem. Biophys. 244, 678–685.CrossRefGoogle Scholar
  24. 24.
    Farhangrazi, Z. S., Sinclair, R., Yamazaki, Y., and Powers, L. S. (1992),Biochemistry 31, 10,763–10,768.CrossRefGoogle Scholar
  25. 25.
    Khmelnitsky, Y. L., Belova, A. B., Levashov, A. V., and Mozhaev, V. V. (1991),FEBS Lett. 284, 267–269.CrossRefGoogle Scholar
  26. 26.
    Mozhaev, V. V., Khmelnitsky, Y. L., Sergeeva, M. V., Belova, A. B., Klyachko, N. L., Levashov, A. V., and Martinek, K. (1989).Eur. J. Biochem. 184, 597–602.CrossRefGoogle Scholar
  27. 27.
    Gorman, L. A. and Dordick, J. S. (1992),Biotechnol. Bioeng. 39, 392–397.CrossRefGoogle Scholar
  28. 28.
    Sugihara, J. M., Branthaver, J. R., and Willcox, K. W. (1973),Prepr. Am. Chem. Soc. Div. Petrol. Chem. 18, 645–647.Google Scholar
  29. 29.
    Gould, K. A. (1980),Fuel 59, 733–736.CrossRefGoogle Scholar
  30. 30.
    Pelet, R., Behar, F., and Monin, J. C. (1986),Org. Geochem. 10, 481–498.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 1998

Authors and Affiliations

  • L. Mogolloń
    • 1
  • R. Rodríguez
    • 1
  • W. Larrota
    • 1
  • C. Ortiz
    • 1
  • R. Torres
    • 1
  1. 1.Colombian Petroleum InstituteLaboratory of BiotechnologyBucaramanga

Personalised recommendations