Applied Biochemistry and Biotechnology

, Volume 70, Issue 1, pp 677–686 | Cite as

Production and purification of tartrate dehydrogenase

Role of aqueous two-phase extraction
  • R. Harve
  • R. K. Bajpai
Session 3: Bioprocessing Research


Tartrate dehydrogenase (TDH) is a stereospecific intracellular enzyme produced byPseudomonas putida. Several methods for separation of nucleic acids from the proteins in cell homogenate were compared in this study. These methods included precipitation (using streptomycin sulfate, manganous sulfate, and protamine sulfate) and aqueous two-phase extraction. Under optimal conditions of separation, a single-step aqueous two-phase extraction followed by back-extraction of the enzyme from enzyme-rich PEG-phase resulted in77% recovery of enzyme. This compared favorably with 50% enzyme recovery using protamine sulfate treatment. Furthermore, the remaining enzyme activity was accounted in the nucleic acid-rich dextran phase and the spent-PEG phase, suggesting that a multistep extraction process would increase enzyme recovery even more. Under the conditions of aqueous two-phase extraction, the selectivity of proteins over nucleic acids was 30, indicating a high degree of separation of proteins and nucleic acids in this process. The experimental data and their implications are presented.

Index Entries

Nucleic acids proteins bioseparation precipitation Pseudomonas putida 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dunhill, P. and Lilly, M. D. (1972),Enzyme Eng.,10:1.Google Scholar
  2. 2.
    Rohit, H. (1994),Protein purification with tartrate dehydrogenase enzyme as a model. MS Thesis, University of Missouri-Columbia.Google Scholar
  3. 3.
    Bonnerjea, J., Oh, S., Hoare, M., and Dunhill, P. (1986),Biotechnology 4, 954.CrossRefGoogle Scholar
  4. 4.
    Jones, A. S. (1953),Biochim. Biophys. Acta. 10, 607.CrossRefGoogle Scholar
  5. 5.
    Guerritore, D. and Bellelli, L. (1969),Nature 184, 1638.CrossRefGoogle Scholar
  6. 6.
    Oxenburgh, M. S. and Snoswell, A. N. (1965),Nature 203, 1416.CrossRefGoogle Scholar
  7. 7.
    Heppel, L. A. (1955),Methods Enzymol. 1, 137.CrossRefGoogle Scholar
  8. 8.
    Higgins, J. J., Lewis, D. J., Daly, W. H., Mosqueira, F. G., Dunhill, P., and Lilly, M. D., (1978),Biotech. Bioengin. 20, 159.CrossRefGoogle Scholar
  9. 9.
    Atkinson, A. and Jack, G. (1973),Biochim. Biophys. Acta. 308, 41.Google Scholar
  10. 10.
    Bingham, A. H. A., Sharman, A. F., and Atkinson, A. (1977),FEBS Lett. 2, 250.CrossRefGoogle Scholar
  11. 11.
    Moskowitz, M., (1963),Nature 200, 335.CrossRefGoogle Scholar
  12. 12.
    Dinovick, R. Bayan, A. P., Canales, P., and Pansy, J. (1948),J. Bacteriol. 56, 125.Google Scholar
  13. 13.
    Hustedt, H., Kroner, K. H., and Kula, M. R. (1984),Proc. Eur. Congr. Biotechnol. 1, 597.Google Scholar
  14. 14.
    Takahashi, T. and Adachi, Y. (1982),J. Biochem. (Tokyo) 91, 1719.Google Scholar
  15. 15.
    Albertsson, P.-A. (1985), inPartitioning in Aqueous Two-Phase Systems: Theory, Methods, Uses, and Applications in Biotechnology, H. Walter, D. E. Brooks, and D. Fisher eds., Academic, New York, pp. 1–10.Google Scholar
  16. 16.
    Bajpai, R. K., Harve, R., and Tipton, P. (1995),Appl. Biochem. Biotechnol. 54, 193.CrossRefGoogle Scholar
  17. 17.
    Johansson, G. and Joelsson, J. (1989), inSeparations Using Aqueous Two Phase Systems, D. Fisher and I. A. Sutherland eds., Plenum, New York, p. 33.Google Scholar
  18. 18.
    Kopperschlager, G. and Johansson, G. (1982),Anal. Biochem. 124, 117.CrossRefGoogle Scholar
  19. 19.
    Mattiasson, B. (1983),Trends Biotechnol. 1, 16.CrossRefGoogle Scholar
  20. 20.
    Szlag, D. C. and Guiliano, K. A. (1988),Biotechnol. Techniques 2(4), 277.CrossRefGoogle Scholar
  21. 21.
    Davidson, P. F. (1965),Proc. Nat. Acad. Sci. USA 45, 1560.CrossRefGoogle Scholar
  22. 22.
    Burgess, R. R. (1969),J. Biol. Chem. 244, 6160.Google Scholar
  23. 23.
    Melling, J. and Atkinson, A. (1972),J. Appl. Chem. Biotechnol. 22, 739.CrossRefGoogle Scholar
  24. 24.
    Kohn, L. D., Packman, P. M., Allen, R. H., and Jakoby, W. B. (1968),J. Biol. Chem. 243, 2469.Google Scholar
  25. 25.
    Tipton, P. A. and Peisach, J. (1990),Biochemistry 29, 1749.CrossRefGoogle Scholar
  26. 26.
    Bradford, M. M. (1976).Analyt. Biochem. 72, 248.CrossRefGoogle Scholar
  27. 27.
    Thome, C. J. R. (1978),Techniques in Protein and Enzyme Biochemistry, Part 1, B104, Elsevier-North, Holland, p. 451.Google Scholar
  28. 28.
    Linn, A. and Lehman, J. K. (1964),J. Biol. Chem. 240, 3.Google Scholar
  29. 29.
    Wang, D. I. C., Cooney, C. L., Demain, A. L., Dunhill, P., Humphrey, A. E., and Lilly, M. D. (1979),Fermentation and Enzyme Technology, Wiley, New York.Google Scholar

Copyright information

© Humana Press Inc. 1998

Authors and Affiliations

  • R. Harve
    • 1
  • R. K. Bajpai
    • 1
  1. 1.University of Missouri-Columbia, Chemical Engineering DepartmentUniversity of Missouri-ColumbiaColumbia

Personalised recommendations