Applied Biochemistry and Biotechnology

, Volume 70, Issue 1, pp 441–462 | Cite as

Ethanol production from AFEX-treated forages and agricultural residues

  • Khaled Belkacemi
  • Ginette Turcotte
  • Damien de Halleux
  • Philippe Savoie
Session 3: Bioprocessing Research

Abstract

Lignocellulosic materials derived from forages, namely timothy grass, alfalfa, reed canary grass, and agricultural residues, such as corn stalks and barley straw, were pretreated using ammonia fiber explosion (AFEX) process. The pretreated materials were directly saccharified by cellulolytic enzymes. Sixty to 80% of theoretical yield of sugars were obtained from the pretreated biomasses. Subsequent ethanolic fermentation of the hydrolysates byPachysolen tannophilus ATCC 32691 resulted in 40-60% of theoretical yield after 24 h, based on the sugars present in the hydrolysates. The uptake of sugars was not complete, indicating a possible inhibitory effect onP. tannophilus during the fermentation of these substrates.

Index Entries

Forages agricultural residues AFEX enzymatic hydrolysis ethanolic fermentation biofuel 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alvo, P., Savoie, P., Tremblay, D., Émond, J. P., and Turcotte, G. (1996),Bioresource Technol. 56, 61–68.CrossRefGoogle Scholar
  2. 2.
    Stone, J. E., Scallan, A. M., Danefer, E., and Ahlgren, E. (1969),Adv. Chem. Serv. 95, 219–223.Google Scholar
  3. 3.
    Fan, L. T., Lee, Y. H., and Gharpuray, M. M. (1982),Adv. Biochem. Eng. Biotechnol. 23, 157–187.Google Scholar
  4. 4.
    Fan, L. T., Lee, Y. H., and Beardmore, D. H. (1980),Biotechnol. Bioeng. 22, 177–199.CrossRefGoogle Scholar
  5. 5.
    Sinitsyn, A. P., Gusakov, A. V., and Vlasenko, E. Y. (1991),Appl. Biochem. Biotechnol. 30, 43–59.Google Scholar
  6. 6.
    Himmel, M., Tucker, M., Baker, J., Rivard, C., Oh, K., and Grohmann, K. (1985),Biotechnol. Bioeng. Symp. 15, 39–58.Google Scholar
  7. 7.
    Millett, M. A., Baker, A. J., and Satter, L. D. (1976),Biotechnol. Bioeng. Symp. 6, 125–153.Google Scholar
  8. 8.
    Brownell, H. H. and Saddler, J. N. (1984),Biotechnol. Bioeng. Symp. 14, 55–68.Google Scholar
  9. 9.
    Chua, M. G. S. and Wayman, M. (1979),Can. J. Chem. 57, 1141–1146.CrossRefGoogle Scholar
  10. 10.
    Shultz, T. P., Biermann, C. J., and Mc Ginnis, G. D. (1983),Ind. Eng. Chem. Prod. Res. Dev. 22, 344–348.CrossRefGoogle Scholar
  11. 11.
    Mackie, K. L., Brownell, H. H., West, K. L., and Saddler, J. N. (1985),J. Wood Chem. Tech. 5/3, 405–425.CrossRefGoogle Scholar
  12. 12.
    Belkacemi, K., Turcotte, G., Savoie, P., and Chornet, E. (1997),Ind. Eng. Chem. Res. 36, 4572–4580.CrossRefGoogle Scholar
  13. 13.
    Iyer, P. V., Wu, Z. W., Kim, S. B., and Yoon, Y. L. (1996),Appl. Biochem. Biotechnol. 57/58, 121–132.Google Scholar
  14. 14.
    Yoon, H. H., Wu, Z. W., and Lee, Y. Y. (1994),Appl. Biochem. Biotechnol. 51/52, 5–19.Google Scholar
  15. 15.
    Kim, S. B. and Lee, Y. Y. (1996),Appl. Biochem. Biotechnol. 57/58, 147–156.CrossRefGoogle Scholar
  16. 16.
    Dale, B. E. and Moreira, M. J. (1982),Biotechnol. Bioeng. Symp. 12, 31–43.Google Scholar
  17. 17.
    Bothast, R. J., Dien, B. S., Iten, L. B., Hespell, R. B., and Lawton, J. W. (1996), inLiquid Fuels and Industrial Products from Renewable Resources, Proceedings of the Liquid Fuel Conference, Nashville, TN, ASAE St-Joseph, pp. 241–252.Google Scholar
  18. 18.
    Dale, B. E. and de la Rosa, L. (1992), inLiquid Fuels from Renewable Resources, Proceedings of an Alternative Energy Conference, Nashville, TN, ASAE St-Joseph, pp. 162–170.Google Scholar
  19. 19.
    Dale, B. E., Leong, C. K., Pham, T. K., Esquivel, V. M., Rios, I., and Larimer, V. M. (1994), inLiquid Fuels, Lubricants and Additives from Biomass, Proceedings of an Alternative Energy Conference, Nashville, TN, ASAE St-Joseph, pp. 104–111.Google Scholar
  20. 20.
    de la Rosa, L., Reshamwala, S., Larimer, V. M., Shawky, B. T., Dale, B. E., and Stuwart, E. D. (1994),Appl. Biochem. Biotechnol. 45/46, 483–497.Google Scholar
  21. 21.
    Holzapple, M. T., Jun, J. H., Ashok, G., Patibandla, S. L., and Dale, B. E. (1991),Appl. Biochem. Biotechnol. 28/29, 59–74.Google Scholar
  22. 22.
    Holzapple, M. T., Ripley, E. P., and Nikolaou, M. (1994),Biotechnol. Bioeng. 44, 1122–1131.CrossRefGoogle Scholar
  23. 23.
    Moniruzzaman, M., Dien, B. S., Ferrer, B., Hespell, R. B., Dale, B. E., Ingram, L. O., and Bothast, R. J. (1996),Biotechnol. Lett. 18, 985–990.CrossRefGoogle Scholar
  24. 24.
    Miller, G. L. (1959),Anal. Chem. 31, 426–428.CrossRefGoogle Scholar
  25. 25.
    Belkacemi, K., Turcotte, G., de Halleux, D., and Savoie, P. (1996), inLiquid Fuels and Industrial Products from Renewable Resources, Proceedings of the Liquid Fuel Conference, Nashville, TN, ASAE St-Joseph, pp 232–240.Google Scholar
  26. 26.
    Chiquette, J. (1997), inProceedings of the 1997 Ethanol Research and Development Workshop, Ottawa, ON, pp 111–114.Google Scholar
  27. 27.
    Beck, M. J. (1986),Biotechnol Bioeng. Symp. 17, 615–627.Google Scholar
  28. 28.
    Coughlan, M. P. (1985),Biotechnol Gen. Eng. Rev. 3, 39–109.Google Scholar
  29. 29.
    Ramos, L. P., Breuil, C., and Saddler, J. N. (1993),Enzyme Microbiol. Technol. 15, 19–25.CrossRefGoogle Scholar
  30. 30.
    Saddler, J. N. (1986),Microbiol. Sci. 3, 84–87.Google Scholar
  31. 31.
    Wood, T. M. (1989), inEnzymes Systems for Lignocellulose Degradation, Coughlan, M. P., ed., Elsevier, London, pp. 17–35.Google Scholar
  32. 32.
    Christov, L. and Prior, B. (1993),Enzyme Microbiol. Technol. 15, 460–475.CrossRefGoogle Scholar
  33. 33.
    Penner, M. H. and Liaw, E. T. (1994), inEnzymatic Conversion of Biomass for Fuels Production, Himmel, M. E., Baker, J. O., and Overend, R. P., eds., ACS Symposium Series 566, pp. 363–371.Google Scholar
  34. 34.
    Panchal, C. J., Bast, L, Russell, I., and Stewart, G. G. (1988),Can. J. Microbiol. 34, 1316–1320.CrossRefGoogle Scholar
  35. 35.
    Dubus, D., Methner, H., Shulze, D., and Dellweg, H. (1983),Eur. J Appl. Microbiol. Biotechnol. 17, 287–291.CrossRefGoogle Scholar
  36. 36.
    Jeffries, T. W. (1990), inYeast Biotechnology and Biocatalysis, Verachtert, H. and De Mot, R., eds. Marcel Dekker, Louvain, Belgium, pp. 349–393.Google Scholar
  37. 37.
    Dien, B. S., Kurtzman, C. P., Saha, B. C., and Bothast, R. J. (1996),Appl. Biochem. Biotechnol. 57/58, 233–242.Google Scholar
  38. 38.
    Ligthelm, M. E., Prior, B. A., and Du Preez, J. C. (1988),Appl. Microbiol. Biotechnol. 28, 293–296.Google Scholar
  39. 39.
    Wilkie, K. C. B. (1979), inAdvances Carbohydrate Chemistry and Biochemistry, Vol. 36 Tipson, R. S., and Horton, D., eds., Academic, New York pp. 215–264.Google Scholar
  40. 40.
    Alvo, P. and Belkacemi, K. (1997),Bioresource Technol. in press.Google Scholar
  41. 41.
    Fan, L. T., Gharpuray, M. M., and Lee, Y. H. (1987), inCellulose Hydrolysis, Springer-Verlag, New York, pp. 5–120.Google Scholar
  42. 42.
    Poutanen, K. and Puls, J. (1989), inBiogenesis and Biodegradation of Plant Cell Wall Polymers, Lewis, G. and Paice, M., eds., American Chemical Society, Washington D. C., pp. 456–467.Google Scholar
  43. 43.
    Doran, J. B. and Ingram, L. O. (1993),Biotechnol. Prog. 9, 533–538.CrossRefGoogle Scholar
  44. 44.
    Ohta, K., Beall, D. S., Mejia, J. P., Shanmugam, K. T., and Ingram, L. O. (1991),Appl. Environ. Microbiol. 57, 893–900.Google Scholar
  45. 45.
    Takahashi, D. F., Carvalhal, M. L., and Alterthum, F. (1994),Biotechnol. Lett. 16, 747–750.CrossRefGoogle Scholar
  46. 46.
    York, S. W. and Ingram, L. O. (1996),Biotechnol. Lett. 18, 683–688.CrossRefGoogle Scholar
  47. 47.
    Zhang, M., Eddy, C., Deanda, K., Finkelstein, M., and Picataggio, S. (1995),Science 267, 240–243.CrossRefGoogle Scholar
  48. 48.
    Schneider, H., Wang, P. Y., Chan, Y. K., and Maleska, R. (1981),Biotechnol. Lett. 3, 89–92.CrossRefGoogle Scholar
  49. 49.
    Slininger, P. J., Bothast, R. J., van Cauwenberge, J. E., and Kurtzman, C. P. (1982),Biotechnol. Bioeng. 24, 371–384.CrossRefGoogle Scholar
  50. 50.
    Slininger, P. J., Bolen, P. L., and Kurtzman, C. P. (1987),Enzyme Microbiol. Technol. 9, 5–15.CrossRefGoogle Scholar
  51. 51.
    Delgenes, J. P., Moletta, R., and Navarro, J. M. (1986),Biotechnol. Lett. 8, 897–900.CrossRefGoogle Scholar
  52. 52.
    Woods, M. A. and Millis, N. F. (1985),Biotechnol. Lett. 7, 679–682.CrossRefGoogle Scholar
  53. 53.
    Du Preez, J. C. and Prior, B. A. (1985),Biotechnol. Lett. 7, 241–246.CrossRefGoogle Scholar
  54. 54.
    Olsson, L. and Hahn-Hägerdal, B. (1996),Enzyme Microbiol. Technol. 18, 312–331.CrossRefGoogle Scholar
  55. 55.
    Zhang, M., Eddy, C., Deanda, K., Finkelstein, M., and Picataggio, S. (1995),Science 267, 240.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 1998

Authors and Affiliations

  • Khaled Belkacemi
    • 1
  • Ginette Turcotte
    • 1
  • Damien de Halleux
    • 2
  • Philippe Savoie
    • 2
    • 3
  1. 1.Department of Food Science and NutritionAgri-Food Engineering University LavalQuébecCanada
  2. 2.Department of SoilAgri-Food Engineering University LavalQuébecCanada
  3. 3.Agriculture and Agri-Food CanadaSte-FoyCanada

Personalised recommendations